Comparison of mercury bioaccumulation between wild and mariculture food chains from a subtropical bay of Southern China
详细信息    查看全文
  • 作者:Yao-Wen Qiu ; Wen-Xiong Wang
  • 关键词:Mercury (Hg) ; Bioaccumulation ; Phytoplankton ; Fish feed ; Food webs ; Daya Bay ; South China
  • 刊名:Environmental Geochemistry and Health
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:38
  • 期:1
  • 页码:39-49
  • 全文大小:693 KB
  • 参考文献:Balogh, S. J., Huang, Y. B., & Offerman, H. J. (2002). Episodes of elevated methylmercury concentrations in prairie streams. Environmental Science and Technology, 36, 1665–1670.CrossRef
    Balshaw, S., Edwards, J. W., Ross, K. E., & Daughtry, B. J. (2008). Mercury distribution in the muscular tissue of farmed southern bluefin tuna (Thunnus maccoyii) is inversely related to the lipid content of tissues. Food Chemistry, 111, 616–621.CrossRef
    Boudou, A., & Ribeyre, F. (1997). Mercury in the food web: Accumulation and transfer mechanisms. In A. Sigel & H. Sigel (Eds.), Mercury and its effects on environment and biology, metal ions in biological systems (pp. 289–319). New York: Marcel Dekker Inc.
    Burger, J., & Gochfeld, M. (2005). Heavy metals in commercial fish in New Jersey. Environmental Research, 99, 403–412.CrossRef
    Bustamante, P., Lahaye, V., Durnez, C., Churlaud, C., & Caurant, F. (2006). Total and organic Hg concentrations in cephalopods from the North Eastern Atlantic waters: Influence of geographical origin and feeding ecology. The Science of the Total Environment, 368, 585–596.CrossRef
    Chouvelon, T., Warnau, M., Churlaud, C., & Bustamante, P. (2009). Hg concentrations and related risk assessment in coral reef crustaceans, molluscs and fish from New Caledonia. Environmental Pollution, 157, 331–340.CrossRef
    Ciesielski, T., Pastukhov, M. V., Szefer, P., & Jenssen, B. M. (2010). Bioaccumulation of mercury in the pelagic food chain of the Lake Baikal. Chemosphere, 78, 1378–1384.CrossRef
    Conaway, C. H., Squire, S., Mason, R. P., & Flegal, A. R. (2003). Mercury speciation in the San Francisco Bay estuary. Marine Chemistry, 80, 199–225.CrossRef
    Fabris, G., Turoczy, N. J., & Stagnitti, F. (2006). Trace metal concentrations in edible tissue of snapper, flathead, lobster, and abalone from coastal waters of Victoria, Australia. Ecotoxicology and Environmental Safety, 63, 286–292.CrossRef
    Feng, X. (2005). Mercury pollution in Chinas—An overview. In N. Pirrone & K. Mahaffey (Eds.), Dynamics of mercury pollution on regional and global scales: Atmospheric processes, human exposure around the world (pp. 657–678). Norwell, MA: Springer Publishers.CrossRef
    Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1–7.CrossRef
    Hall, B. D., Bodaly, R. A., Fudge, R. J. P., Rudd, J. W. M., & Rosenberg, D. M. (1997). Food as the dominant pathway of methylmercury uptake by fish. Water Air Soil Pollution, 100, 13–24.
    Ikonomou, M. G., Higgs, D. A., Gibbs, M., Oakes, J., Skura, B., Mckinley, S., et al. (2007). Flesh quality of market-size farmed and wild British Columbia salmon. Environmental Science and Technology, 41, 437–443.CrossRef
    Jiang, G. B., Shi, J. B., & Feng, X. B. (2006). Mercury pollution in China. Environmental Science and Technology, 40, 3673–3678.
    Kannan, K., Smith, J. R. G., Lee, R. F., Windom, H. L., Heitmuller, P. T., Macauley, J. M., & Summers, J. K. (1998). Distribution of total mercury and methyl mercury in water, sediment and fish from South Florida estuaries. Archives of Environmental Contamination and Toxicoloy, 34, 109–118.CrossRef
    Kehrig, H. A., Palermo, E. F. A., Seixas, T. G., Branco, C. W. C., Moreira, I., & Malm, O. (2009). Trophic transfer of methylmercury and trace elements by tropical estuarine seston and plankton. Estuarine, Coastal and Shelf Science, 85, 36–44.CrossRef
    Kehrig, H. A., Seixas, T. G., Baêta, A. P., Malm, O., & Moreira, I. (2010). Inorganic and methyl mercury: Do they transfer along a tropical coastal food web? Marine Pollution Bulletin, 60, 2350–2356.CrossRef
    Kelly, B. C., Ikonomou, M. G., Higgs, D. A., Oakes, J., & Dubetz, C. (2008). Mercury and other trace elements in farmed and wild salmon from British Columbia, Canada. Environmental Toxicology and Chemistry, 27, 1361–1370.CrossRef
    Kiriluk, R. M., Servos, M. R., Whittle, D. M., Cabana, G., & Rasmussen, J. B. (1995). Using stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in Lake Ontario pelagic food web. Canadian Journal of Fisheries and Aquatic Sciences, 52, 2660–2674.CrossRef
    Lafabrie, C., Pergent, G., Pergent-Martini, C., & Capiomont, A. (2007). Posidonia oceanica: A tracer of past mercury contamination. Environmental Pollution, 148, 688–692.CrossRef
    Liang, P., Shao, D. D., Wu, S. C., Shi, J. B., Sun, X. L., Wu, F. Y., et al. (2011). The influence of mariculture on mercury distribution in sediments and fish around Hong Kong and adjacent mainland China waters. Chemosphere, 82, 1038–1043.CrossRef
    Lin, Y., Vogt, R., & Larssen, T. (2012). Environmental mercury in China: A review. Environmental Toxicology and Chemistry, 31, 2431–2444.CrossRef
    Mason, R. P., Reinfelder, J. R., & Morel, F. M. M. (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science and Technology, 30, 1835–1845.CrossRef
    McIntyre, J. K., & Beauchamp, D. A. (2007). Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington. The Science of the Total Environment, 372, 571–584.CrossRef
    Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. Ambio, 36, 3–11.CrossRef
    Mikac, N., Niessen, S., Ouddane, B., & Wartel, M. (1999). Speciation of mercury in sediments of the Seine Estuary (France). Applied Organometalic Chemistry, 13, 715–725.CrossRef
    Miles, C. J., Moye, H. A., Phlips, E. J., & Sargent, B. (2001). Partitioning of monomethylmercury between freshwater algae and water. Environmental Science and Technology, 35, 4277–4282.CrossRef
    Mount, D. R., Barth, A. K., Garrison, T. D., Barten, K. A., & Hockett, J. R. (1994). Dietary and waterborne exposure of rainbow trout (Oncophynchus mykiss) to copper, cadmium, lead and zinc using a life diet. Environmental Toxicology and Chemistry, 13, 2031–2041.CrossRef
    Nfon, E., Cousins, I. T., Järvinen, O., Mukherjee, A. B., Verta, M., & Broman, D. (2009). Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea. The Science of the Total Environment, 407, 6267–6274.CrossRef
    Onsanit, S., Chen, M., Ke, C. H., & Wang, W.-X. (2012). Mercury and stable isotope signatures in caged marine fish and fish feeds. Journal of Hazardous Materials, 203–204, 13–21.CrossRef
    Pan, K., Chan, H. D., Tam, Y. K., & Wang, W.-X. (2014). Low mercury levels in marine fish from estuarine and coastal environments in southern China. Environmental Pollution, 185, 250–257.CrossRef
    Qiu, Y. W., Yan, W., Wang, Z. D., & Zhang, G. (2005). Distributions of heavy metals in seawater, sediments and organisms at Daya Bay and their ecological harm. Journal Tropic Oceanography, 24, 69–76.
    Qiu, Y. W., Lin, D., Liu, J. Q., & Zeng, E. Y. (2011a). Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment. Ecotoxicology and Environmental Safety, 74, 284–293.CrossRef
    Qiu, Y. W., Yu, K. F., Zhang, G., & Wang, W.-X. (2011b). Accumulation and partitioning of seven trace metals in mangroves and sediment cores in three estuarine wetlands of Hainan Island, China. Journal of Hazardous Materials, 190, 631–638.CrossRef
    Qiu, Y. W., Zhang, G., Guo, L. L., Cheng, H. R., Wang, W. X., Li, X. D., & Wai, O. W. H. (2009). Current status and historical trends of organochlorine pesticides in the ecosystem of Deep Bay, South China. Estuarine, Coastal and Shelf Science, 85(2), 265–272.CrossRef
    Riisgard, H. U., & Famme, P. (1986). Accumulation of inorganic and organic mercury in shrimp, Crangon crangon. Marine Pollution Bulletin, 17, 255–257.CrossRef
    Shi, J. B., Ip, C. C. M., Tang, C. W. Y., Zhang, G., Wu, R. S. S., & Li, X. D. (2007). Spatial and temporal variations of mercury in sediments from Victoria Harbour, Hong Kong. Marine Pollution Bulletin, 54, 480–485.CrossRef
    Shi, J. B., Ip, C. C. M., Zhang, G., Jiang, G. B., & Li, X. D. (2010). Mercury profiles in sediments of the Pearl River Estuary and the surrounding coastal area of South China. Environmental Pollution, 158, 1974–1979.CrossRef
    Song, X. Y., Huang, L. M., Zhang, J. L., Huang, H. H., Li, T., & Su, Q. (2009). Harmful algal blooms (HABs) in Daya Bay, China: An in situ study of primary production and environmental impacts. Marine Pollution Bulletin, 58, 1310–1318.CrossRef
    Spry, D. J., Hodson, P. V., & Wood, C. M. (1988). Relative contribution of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Canadian Journal of Fisheries and Aquatic Sciences, 45, 32–41.CrossRef
    Spry, D. J., & Wiener, J. G. (1991). Metal bioavailability and toxicity to fish in low-alkalinity lakes—A critical review. Environmental Pollution, 71, 243–304.CrossRef
    Streets, D. G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., & Feng, X. (2005). Anthropogenic mercury emissions in China. Atmospheric Environment, 39, 7789–7806.CrossRef
    Tsuchiya, A., Hinners, T. A., Burbacher, T. M., Faustman, E. M., & Mariën, K. (2008). Mercury exposure from fish consumption within the Japanese and Korean communities. Journal Toxicology and Environmental Health (Part A)., 71, 1019–1031.CrossRef
    van der Oost, R., Beyer, J., & Vermeulen, P. E. N. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13, 57–149.CrossRef
    Wang, W.-X., & Rainbow, P. S. (2008). Comparative approaches to understand metal bioaccumulation in aquatic animals. Comparative Biochemistry and Physiology, Part C, 148, 315–323.
    Watras, C. J., Backa, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. The Science of the Total Environment, 219, 183–208.CrossRef
    Wolfe, M. F., Schwarzbach, S., & Sulaiman, R. A. (1998). The effects of mercury on wildlife: A comprehensive review. Environmental Toxicology and Chemistry, 17, 146–160.CrossRef
    Zhang, L., & Wong, M. H. (2007). Environmental mercury contamination in China: Sources and impacts. Environment International, 33, 108–121.CrossRef
  • 作者单位:Yao-Wen Qiu (1)
    Wen-Xiong Wang (2)

    1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
    2. Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Atmospheric Protection, Air Quality Control and Air Pollution
    Public Health
  • 出版者:Springer Netherlands
  • ISSN:1573-2983
文摘
Bioaccumulation and trophic transfer of mercury (Hg) both in the natural marine ecosystem and the mariculture ecosystem were studied at Daya Bay, a subtropical bay in Southern China. Averaged Hg concentrations in sediment, phytoplankton, macrophyte, shrimp, crab, shellfish, planktivorous fish, carnivorous fish, farmed pompano, farmed snapper, compound feed and trash fish were 0.074, 0.054, 0.044, 0.098, 0.116, 0.171, 0.088, 0.121, 0.210, 0.125, 0.038 and 0.106 μg g−1 dw, respectively. These Hg levels were at the low–middle ends of the global range. Positive correlation between Hg concentrations in farmed fish and fish weights/sizes was observed, whereas no clear correlation between Hg concentrations and lipid contents was found. Hg concentrations followed macrophyte < phytoplankton < sediment < planktivorous fish < shrimp < crab < carnivorous fish < shellfish, and commercial feed < trash fish < farmed fish. Hg was biomagnified along the marine food chain in the ecosystem of Daya Bay. Hg levels in the farmed fish were higher than those in the wild fish primarily because of the higher Hg level in fish feed and the smaller size of marine wild fish. Keywords Mercury (Hg) Bioaccumulation Phytoplankton Fish feed Food webs Daya Bay, South China

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700