Evolutionary and Expression Analyses of Basic Zipper Transcription Factors in the Highly Homozygous Model Grape PN40024 (Vitis vinifera L.)
详细信息    查看全文
  • 作者:Min Gao (1) (2)
    Hongjing Zhang (1) (2)
    Chunlei Guo (1) (2)
    Chenxia Cheng (1) (2)
    Rongrong Guo (1) (2)
    Linyong Mao (3)
    Zhangjun Fei (3) (4)
    Xiping Wang (1) (2)
  • 关键词:Genome ; wide ; Evolution ; bZIP transcription factor ; Phylogenetic analysis ; Expression ; Grape
  • 刊名:Plant Molecular Biology Reporter
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:32
  • 期:5
  • 页码:1085-1102
  • 全文大小:4,063 KB
  • 参考文献:1. Amoutzias G, Veron A, Weiner J, Robinson-Rechavi M, Bornberg-Bauer E, Oliver S, Robertson D (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24(3):827鈥?35 CrossRef
    2. B眉ttner M, Singh KB (1997) / Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an / ocs element binding protein. Proc Natl Acad Sci U S A 94(11):5961鈥?966 CrossRef
    3. Barbosa EGG, Leite JP, Marin SRR, Marinho JP, Carvalho JFC, Fuganti-Pagliarini R, Farias JRB, Neumaier N, Marcelino-Guimar茫es FC, de Oliveira MCN (2013) Overexpression of the ABA-dependent AREB1 transcription factor from / Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Rep 31(3):719鈥?30 CrossRef
    4. Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473鈥?88 CrossRef
    5. Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in / Arabidopsis. Proc Natl Acad Sci U S A 103(45):17042鈥?7047 CrossRef
    6. Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G (2012) Characterization of potential ABA receptors in / Vitis vinifera. Plant Cell Rep 31(2):311鈥?21 CrossRef
    7. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in / Arabidopsis thaliana. BMC Plant Biol 4(1):10 CrossRef
    8. Carretero-Paulet L, Galstyan A, Roig-Villanova I, Mart铆nez-Garc铆a JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153(3):1398鈥?412 CrossRef
    9. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225鈥?36 CrossRef
    10. Chuang C-F, Running MP, Williams RW, Meyerowitz EM (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in / Arabidopsis thaliana. Genes Dev 13(3):334鈥?44 CrossRef
    11. Corr锚a LGG, Ria帽o-Pach贸n DM, Schrago CG, Dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3(8):e2944 CrossRef
    12. Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic leucine zipper factor interactions: insight into the evolution of closed interaction networks. Mol Biol Evol 23(8):1480鈥?492 CrossRef
    13. Du H, Wang Y-B, Xie Y, Liang Z, Jiang S-J, Zhang S-S, Huang Y-B, Tang Y-X (2013) Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res 20(5):437鈥?48 CrossRef
    14. Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94鈥?16 CrossRef
    15. Ferreira RB, Monteiro SS, Pi莽arra-Pereira MA, Teixeira AR (2004) Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends Biotechnol 22(4):168鈥?73 CrossRef
    16. Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183(3):557鈥?64 CrossRef
    17. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in / Arabidopsis. Plant Cell 17(12):3470鈥?488 CrossRef
    18. Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12(6):901鈥?15 CrossRef
    19. Gao M, Wang Q, Wan R, Fei Z, Wang X (2012) Identification of genes differentially expressed in grapevine associated with resistance to / Elsinoe ampelina through suppressive subtraction hybridization. Plant Physiol Biochem 58:253鈥?68 CrossRef
    20. Garc铆a MNM, Giammaria V, Grandellis C, T茅llez-I帽贸n MT, Ulloa RM, Capiati DA (2012) Characterization of StABF1, a stress-responsive bZIP transcription factor from / Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 235(4):761鈥?78 CrossRef
    21. Guan Y, Ren H, Xie H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot ( / Daucus carota L.) somatic embryogenesis. Plant J 60(2):207鈥?17 CrossRef
    22. Guo R, Xu X, Carole B, Li X, Gao M, Zheng Y, Wang X (2013) Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genomics 14:554 CrossRef
    23. He S, Shan W, Kuang J-f, Xie H, Xiao Y-y, Lu W-j, Chen J-y (2013) Molecular characterization of a stress-response bZIP transcription factor in banana. Plant Cell Tiss Org Cul 113(2):173鈥?87 CrossRef
    24. Hurst HC (1994) Transcription factors 1: bZIP proteins. Protein Profile 2(2):101鈥?68
    25. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463鈥?67 CrossRef
    26. Jakoby M, Weisshaar B, Dr枚ge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in / Arabidopsis. Trends Plant Sci 7(3):106鈥?11 CrossRef
    27. Kang J-y, Choi H-i, Im M-y, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14(2):343鈥?57 CrossRef
    28. Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat / HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134(1):74鈥?6 CrossRef
    29. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309鈥?38 CrossRef
    30. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947鈥?948 CrossRef
    31. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acid Res 40(D1):D302鈥揇305 CrossRef
    32. Li HE, Xu Y, Xiao Y, Zhu ZG, Xie XQ, Zhao HQ, Wang YJ (2010) Expression and functional analysis of two genes encoding transcription factors, / VpWRKY1 and / VpWRKY2, isolated from Chinese wild / Vitis pseudoreticulata. Planta 232(6):1325鈥?337 CrossRef
    33. Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141(4):1167鈥?184 CrossRef
    34. Liao Y, Zou H-F, Wei W, Hao Y-J, Tian A-G, Huang J, Liu Y-F, Zhang J-S, Chen S-Y (2008) Soybean / GmbZIP44, / GmbZIP62 and / GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic / Arabidopsis. Planta 228(2):225鈥?40 CrossRef
    35. Licausi F, Giorgi F, Zenoni S, Osti F, Pezzotti M, Perata P (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in / Vitis vinifera. BMC Genomics 11(1):719 CrossRef
    36. Liu C, Wu Y, Wang X (2012) bZIP transcription factor / OsbZIP52/ / RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6):1157鈥?169 CrossRef
    37. Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281(31):22190鈥?2199 CrossRef
    38. Meier I, Gruissem W (1994) Novel conserved sequence motifs in plant G-box binding proteins and implications for interactive domains. Nucleic Acid Res 22(3):470鈥?78 CrossRef
    39. Meng X, Zhao W, Lin R, Wang M, Peng Y (2005) Identification of a novel rice bZIP-type transcription factor gene, / OsbZIP1, involved in response to infection of / Magnaporthe grisea. Plant Mol Biol Rep 23(3):301鈥?02 CrossRef
    40. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411鈥?32 CrossRef
    41. Niggeweg R, Thurow C, Kegler C, Gatz C (2000) Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 275(26):19897鈥?9905 CrossRef
    42. Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146(2):333鈥?50 CrossRef
    43. Paterson AH, Wang X, Tang H, Lee TH (2012) Synteny and genomic rearrangements. Plant Gen Diver 1:195鈥?07
    44. Peng S, Zhu Z, Zhao K, Shi J, Yang Y, He M, Wang Y (2013) A novel heat shock transcription factor, / VpHsf1, from Chinese wild / Vitis pseudoreticulata is involved in biotic and abiotic stresses. Plant Mol Biol Rep 31(1):240鈥?47 CrossRef
    45. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489鈥?21 CrossRef
    46. Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol 27(4):862鈥?74 CrossRef
    47. Pontier D, Miao ZH, Lam E (2001) Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J 27(6):529鈥?38 CrossRef
    48. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276鈥?77 CrossRef
    49. Riechmann J, Heard J, Martin G, Reuber L, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105鈥?110 CrossRef
    50. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11):5857鈥?864 CrossRef
    51. Siberil Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Eur J Biochem 268(22):5655鈥?666 CrossRef
    52. Silveira AB, Gauer L, Tomaz JP, Cardoso PR, Carmello-Guerreiro S, Vincentz M (2007) The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development. Plant Sci 172(6):1148鈥?156 CrossRef
    53. Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato ( / Solanum tuberosum L.). DNA Res 20(4):403鈥?23 CrossRef
    54. Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61(6):897鈥?15 CrossRef
    55. Tak H, Mhatre M (2013) Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from / Vitis vinifera. Protoplasma 250(1):333鈥?45 CrossRef
    56. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731鈥?739 CrossRef
    57. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22(9):511鈥?19 CrossRef
    58. Upreti K, Murti G (2010) Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biol Plant 54(4):730鈥?34 CrossRef
    59. Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011a) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53(3):212鈥?31 CrossRef
    60. Wang LJ, Li SH (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape ( / Vitis vinifera L.) leaves. Plant Grow Reg 48(2):137鈥?44 CrossRef
    61. Wang N, Xiang Y, Fang L, Wang Y, Xin H, Li S (2013) Patterns of gene duplication and their contribution to expansion of gene families in grapevine. Plant Mol Biol Rep 31:852鈥?61 CrossRef
    62. Wang Y, Liu Y, He P, Chen J (1995) Evaluation of foliar resistance to / Uncinula necator in Chinese wild / Vitis species. Vitis 34(3):159鈥?64
    63. Wang Y, Wang X, Tang H, Tan X, Ficklin SP, Feltus FA, Paterson AH (2011b) Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One 6(12):e28150 CrossRef
    64. Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of / OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938鈥?952 CrossRef
    65. Xiao HG, Nassuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in / V. riparia and / V. vinifera. Plant Cell Rep 25(9):968鈥?77 CrossRef
    66. Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S (2012) DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci 18:267鈥?76 CrossRef
    67. Yang D-L, Yang Y, He Z (2013) Role of plant hormones and their cross-talks in rice immunity. Mol Plant 6:675鈥?85 CrossRef
    68. Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J (2008) Water deficits and heat shock effects on photosynthesis of a transgenic / Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59(4):839鈥?48 CrossRef
    69. Zhang Y, Mao L, Wang H, Brocker C, Yin X, Vasiliou V, Fei Z, Wang X (2012) Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. PloS One 7(2):e32153 CrossRef
    70. Zhuang J, Peng R, Cheng Z, Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu X, Jin X (2009) Genome-wide analysis of the putative AP2/ERF family genes in / Vitis vinifera. Sci Hortic 123(1):73鈥?1 CrossRef
    71. Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, / OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675鈥?83 CrossRef
  • 作者单位:Min Gao (1) (2)
    Hongjing Zhang (1) (2)
    Chunlei Guo (1) (2)
    Chenxia Cheng (1) (2)
    Rongrong Guo (1) (2)
    Linyong Mao (3)
    Zhangjun Fei (3) (4)
    Xiping Wang (1) (2)

    1. State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
    2. Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
    3. Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
    4. USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
  • ISSN:1572-9818
文摘
Basic leucine zipper (bZIP) proteins, which function as transcription factors and play important regulatory roles in all eukaryotic organisms, have been identified and classified in plants based on the sequenced genomes of model species such as Arabidopsis thaliana and rice (Oryza sativa). However, far less is currently known about the evolutionary relationships and expression patterns of bZIP genes in nonmodel plants. In this study, we performed a genome-wide analysis and identified a total of 47 bZIP transcription factors from grape (Vitis vinifera L., cv PN40024). Phylogenetic analysis of grape bZIP transcription factors along with their Arabidopsis and rice counterparts indicated that they can be classified into 13 different groups. Furthermore, evolutionary analysis of the grape bZIP transcription factors demonstrated that segmental duplications have contributed substantially to the expansion of this family in grape. In addition, synteny analysis between grape and Arabidopsis suggested that some of the bZIP members were present in their most recent common ancestor and that the major expansion occurred before the divergence of the two species. Gene expression analysis of the grape bZIP transcription factor-encoding genes revealed tissue-specific, biotic and abiotic stress and hormone-responsive expression profiles. Taken together, the genome-wide identification and characterization of grape bZIP transcription factors provide insights into their evolutionary history and a resource for further functional characterization in the context of crop improvement and stress tolerance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700