Structure and kinematic analysis of the deepwater area of the Qiongdongnan Basin through a seismic interpretation and analogue modeling experiments
详细信息    查看全文
  • 作者:Zhen Sun ; Zhenfeng Wang ; Zhipeng Sun ; Zhangwen Wang ; Wei Zhang
  • 关键词:rifting structure ; basin formation mechanism ; profile interpretation ; analogue modeling experiments ; Qiongdongnan Basin
  • 刊名:Acta Oceanologica Sinica
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:34
  • 期:4
  • 页码:32-40
  • 全文大小:2,774 KB
  • 参考文献:Corti G, Bonini M, Mazzarini F, et al. 2002. Magma-induced strain localization in centrifuge models of transfer zones. Tectonophysics, 348: 205鈥?18View Article
    Fyhn M B, Nielsen L H, Boldreel L O, et al. 2009. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam. Marine and Petroleum Geology, 16: 1鈥?9View Article
    Gilley L D, Harrison T M, Leloup P H, et al. 2003. Direct dating of leftlateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research, 108: doi: 10.1029/2001JB001726. issn: 0148-0227
    Lei Chao, Ren Jianye, Pei Jianxiang, et al. 2011. Tectonic framework and multiple episode tectonic evolution in deepwater area of Qiongdongnan Basin, northern continental margin of South China Sea. Earth Science鈥擩ournal of China University of Geoscience, 36(1): 151鈥?62, doi: 10.3799/dqkx.2011.016
    Qiu Ning, Wang Zhenfeng, Xie Hui, et al. 2013. Geophysical investigations of crust-scale structural model of the Qiongdongnan Basin, northern South China Sea. Marine Geophysical Research, 34(3鈥?): 259鈥?79, doi: 10.1007/s11001-013-9182-8View Article
    Su Ming, Xie Xinong, Jiang Tao, et al. 2011. Characteristics of S40 boundary and its significance in Qiongdongnan Basin, northern Continental margin of South China Sea. Earth Science-Journal of China University of Geoscience (in Chinese), 36(5): 886鈥?94, doi: 10.3799/dqkx.2011.093
    Su Ming, Xie Xinong, Wang Zhenfeng, et al. 2013. Sedimentary evolution of the central canyon system in Qiongdongnan Basin, northern South China Sea. Acta Petrolei Sinica (in Chinese), 34(3): 467鈥?78
    Sun Zhen, Zhou Di, Sun Longtao, et al. 2010. Dynamic analysis on the rifting stage of the Pearl River Mouth Basin through analogue modeling. Journal of Earth Science, 21(4): 439鈥?54View Article
    Sun Zhen, Zhou Di, Zhong Zhihong, et al. 2006. Research on the dynamics of the South China Sea opening: evidence from analogue modeling. Science in China: Series D, 49(10): 1053鈥?069.View Article
    Wang Zhenfeng. 2012. Important deepwater hydrocarbon reservoirs: the central canyon system in the Qiongdongnan Basin (in Chinese). Acta Sedimentologica Sinica, 30(4): 646鈥?53, doi: 1000-0550(2012)04-0646-08
    Wang Zhangwen, Sun Zhen, Qiu Ning, et al. 2013. Crustal structure of Changchang sag in the deepwater area of Qiongdongnan basin. Marine Geology Frontiers, 29(8): 7鈥?7
    Xie Wenyan, Sun Zhen, Zhang Yiwei, et al. 2007. The Dynamic and hydrocarbon accumulation analysis of the inversion structures on the northern marginal basins of the South China Sea. Earth Science鈥擩ournal of China University of Geoscience (in Chinese), 32(Supp): 32鈥?0
    Xu Ziying, Sun Zhen, Zhang Yunfan, et al. 2011. Inversion structures in the northern continental margin of the South China Sea: taking Lingao uplift in the Yinggehai Basin and Qionghai sag in the Pearl River Mouth Basin as examples. Earth Frontiers (in Chinese), 2010(04): 90鈥?8
    Zhang Cuimei, Wang Zhenfeng, Sun Zhipeng, et al. 2013. Structural differences between the western and eastern Qiongdongnan Basin: evidence of Indochina block extrusion and South China Sea seafloor spreading. Marine Geophysical Research, 34: 295鈥?08, doi: 10.1007/s11001-013-9187-3View Article
    Zhao Zhongxian, Sun Zhen, Wang Zhenfeng, et al. 2013. The dynamic mechanism of post-rift accelerated subsidence in Qiongdongnan Basin, northern South China Sea. Marine Geophysical Research, 34: 295鈥?08, doi: 10.1007/s11001-013-9188-2View Article
    Zhu Weilin, Lei Chao. 2013. Refining the model of South China Sea鈥檚 tectonic evolution: evidence from Yinggehai-Song Hong and Qiongdongnan Basins. Marine Geophysical Research, 34(3鈥?): 325鈥?39, doi: 10.1007/s11001-013-9202-8View Article
  • 作者单位:Zhen Sun (1)
    Zhenfeng Wang (2)
    Zhipeng Sun (2)
    Zhangwen Wang (3)
    Wei Zhang (2)
    Lijuan He (2)

    1. Key Laboratory of Chinese Academy of Sciences for Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
    2. Zhanjiang Branch of China National Offshore Oil Corporation Limited, Zhanjiang, 524057, China
    3. Shandong Province Geological Prospecting Institute, China Chemical Geology and Mine Bureau, Jinan, 250013, China
  • 刊物主题:Oceanography; Climatology; Ecology; Engineering Fluid Dynamics; Marine & Freshwater Sciences; Environmental Chemistry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1099
文摘
Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that: the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700