Well Thickness Dependence of the Internal Quantum Efficiency and Carrier Concentration in GaN-Based Multiple Quantum Well Light-Emitting Diodes
详细信息    查看全文
  • 作者:Kun Zhao ; Xiufang Yang ; Bing Xu ; Ding Li ; Cunda Wang…
  • 关键词:GaN ; based light ; emitting diode ; multiple quantum well ; internal quantum efficiency ; efficiency droop
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:45
  • 期:1
  • 页码:786-790
  • 全文大小:745 KB
  • 参考文献:1.M. Ty, P. Brandon, F. John, M. Brice, S. Robert, O. Kraig, and L. Alex, J. Electron. Mater. 43, 4552 (2014).CrossRef
    2.W.J. Yang, W.L. Wang, Y.H. Lin, Z.L. Liu, S.Z. Zhou, H.R. Qian, and G.Q. Li, J. Electron. Mater. 44, 2670 (2015).CrossRef
    3.Y. Li, L.F. Feng, Q.Y. Xing, and X.L. Wang, J. Electron. Mater. 44, 999 (2015).CrossRef
    4.J. Yun, H.S. Yeom, and J.I. Shim, J. Korean Phys. Soc. 63, 1218 (2013).CrossRef
    5.L.B. Chang, M.J. Lai, R.M. Lin, and C.H. Huang, Appl. Phys. Express 4, 012106 (2011).CrossRef
    6.H.J. Li, P.P. Li, J.J. Kang, Z. Li, Y.Y. Zhang, M. Liang, Z.C. Li, J. Li, X.Y. Yi, and G.H. Wang, Appl. Phys. Express 6, 092101 (2013).CrossRef
    7.T. Fleck, M. Schmidt, and C. Klingshirn, Phys. Status Solidi (a) 198, 248 (2003).CrossRef
    8.Q. Dai, M.F. Schubert, M.H. Kim, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, and M.A. Banas, Appl. Phys. Lett. 94, 111109 (2009).CrossRef
    9.R.K. Ahrenkiel, Solid State Electron. 35, 239 (1992).CrossRef
    10.C.E. Martinez, N.M. Stanton, A.J. Kent, D.M. Graham, P. Dawson, M.J. Kappers, and C.J. Humphreys, J. Appl. Phys. 98, 053509 (2005).CrossRef
    11.J. Yan, T.J. Yu, X.B. Li, Y.B. Tao, C.L. Xu, H. Long, Z.Y. Yang, and G.Y. Zhang, J. Appl. Phys. 110, 073102 (2011).CrossRef
    12.Y.R. Han, S.K. Hyun, and I.S. Jong, Appl. Phys. Lett. 95, 081114 (2009).CrossRef
    13.J. Han, G. Kang, D. Kang, Y. Moon, H. Jeong, J. Song, and T.Y. Seong, J. Electron. Mater. 42, 2876 (2013).CrossRef
    14.M.D. Craven, P. Waltereit, J.S. Speck, and S.P. DenBaars, Appl. Phys. Lett. 84, 496 (2004).CrossRef
    15.T.S. Ko, T.C. Lu, T.C. Wang, M.H. Lo, J.R. Chen, R.C. Gao, H.C. Kuo, S.C. Wang, and J.L. Shen, Appl. Phys. Lett. 90, 181122 (2007).CrossRef
    16.J. Hader, J.V. Moloney, and S.W. Koch, Appl. Phys. Lett. 87, 201112 (2005).CrossRef
    17.Aurélien David and Michael J. Grundmann, Appl. Phys. Lett. 97, 033501 (2010).CrossRef
    18.X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. ÖzgÜr, H. Morkoç, S.M. Hong, S.H. Yen, T.C. Hsu, and A. Matulionis, J. Appl. Phys. 111, 063112 (2012).CrossRef
    19.E. Kioupakis, Q.M. Yan, and C.G. Van de Walle, Appl. Phys. Lett. 101, 231107 (2012).CrossRef
    20.E. Kioupakis, Q.M. Yan, D. Steiauf, and C.G. Van de Walle, New J. Phys. 15, 125006 (2013).CrossRef
    21.Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, and M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007).CrossRef
    22.A. David and M.J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010).CrossRef
    23.H.Y. Ryu, K.H. Ha, J.H. Chae, K.S. Kim, J.K. Son, O.H. Nam, Y.J. Park, and J.I. Shim, Appl. Phys. Lett. 89, 171106 (2006).CrossRef
    24.Aurélien David, Michael J. Grundmann, J.F. Kaeding, N.F. Gardner, T.G. Mihopoulos, and M.R. Krames, Appl. Phys. Lett. 92, 053502 (2008).CrossRef
    25.Y.L. Li, Y.R. Huang, and Y.H. Lai, IEEE J. Sel. Top. Quantum Electron. 15, 2015894 (2009).
    26.Y.L. Li, Y.R. Huang, and Y.H. Lai, Appl. Phys. Lett. 91, 181113 (2007).CrossRef
  • 作者单位:Kun Zhao (1)
    Xiufang Yang (1)
    Bing Xu (1)
    Ding Li (2)
    Cunda Wang (1)
    Liefeng Feng (1)

    1. Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
    2. Research Center for Wide Band Semiconductors, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
The internal quantum efficiency (IQE) dependence characteristics of seven-well multiple quantum well (MQW) GaN-based light-emitting diodes (LEDs) on well thickness were obtained based on the rate equation without setting specific values for the coefficients. The IQE increased with increasing well thickness until the thickness reached 3.0 nm, where the IQE reached a maximum, and then decreased with further increases in well thickness. This IQE well thickness dependence is consistent with that of the measured light emission efficiency. In addition, using various values of the radiative recombination coefficient B, which contained the effects of the carrier density and polarization fields (and was thus dependent on the well thickness), we calculated the rate coefficients. The results indicate that the main factor that is limiting the well thickness dependence of the IQE is Shockley–Read–Hall (SRH) nonradiative recombination. Also, at B = 1010 cm3 s−1 in a 3.0 nm thick well, the optimal values in the rate equation of A, corresponding to the SRH nonradiative recombination, and C, corresponding to the carrier leakage (or Auger recombination), are 2.25 × 108 s−1 and 9.2 × 10−31 cm6 s−1, respectively. Also, at a given current, the maximum carrier concentration and the minimum radiative recombination lifetime were achieved using a 3.0 nm well thickness. Overall, for the seven-well MQW InGaN/GaN LEDs studied, the optimal well thickness was 3.0 nm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700