Mechanical Properties and Dissolution Behavior of Plasma Sprayed Wollastonite Coatings Deposited at Different Substrate Temperatures
详细信息    查看全文
  • 作者:Weize Wang (1) wangwz@ecust.edu.cn
    Jiachun Liang (1)
    Xueping Guo (2)
    Fuzhen Xuan (1)
    Huoxing Hong (1)
  • 关键词:Key words atmospheric plasma spraying – dissolution behavior – mechanical properties – substrate temperature – wollastonite coatings
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:21
  • 期:3-4
  • 页码:496-504
  • 全文大小:669.8 KB
  • 参考文献:1. F. D’Angelo, M. Molina, G. Riva, G. Zatti, and P. Cherubino, Failure of Dual Radius Hydroxyapatite-Coated Acetabular Cups, J. Orthop. Surg., 2008, 3(35), doi: 10.1186/1749-799X-3-35
    2. P. Chandra, M. Azzabi, J. Miles, M. Andrews, and J. Bradley, Furlong Hydroxyapatite-Coated Hip Prosthesis vs the Charnley Cemented Hip Prosthesis, J. Arthroplasty, 2010, 25(1), p 52-57
    3. K.G. Nilsson, J. Karrholm, L. Carlsson, and T. Dalen, Hydroxyapatite Coatings Versus Cemented Fixation of the Tibial Component in Total Knee Arthroplasty: Prospective Randomized Comparison of Hydroxyapatite-Coated and Cemented Tibial Components with 5-Year Follow Up Using Radiostereometry, J. Arthroplasty, 1999, 14(1), p 9-20
    4. K.A. Khor, L. Fu, V.J.P. Lim, and P. Cheang, The Effects of ZrO2 on the Phase Compositions of Plasma Sprayed HA/YSZ Composite Coatings, Mater. Sci. Eng. A, 2000, 276, p 160-166
    5. X.Y. Liu and C.X. Ding, Study on Structure and Properties of Plasma Sprayed Wollastonite Coatings, J. Chin. Ceram. Soc., 2002, 30(1), p 20-25
    6. X. Zhen, M. Huang, and C.X. Ding, Bond Strength of Plasma-Sprayed Hydroxyapatite/Ti Composite Coatings, Biomaterials, 2000, 21, p 841-849
    7. X.Y. Liu, C.X. Ding, and Z.Y. Wang, Apatite Formed on THE Surface of Plasma-Sprayed Wollastonite Coating Immersed in Simulated Body Fluid, Biomaterials, 2001, 22, p 2007-2012
    8. X.Y. Liu and C.X. Ding, Morphology of Apatite Formed on Surface of Wollastonite Coating Soaked in Simulate Body Fluid, Mater. Lett., 2002, 57, p 652-655
    9. W.C. Xue, X.Y. Liu, X.B. Zheng, and C.X. Ding, In Vivo Evaluation of Plasma-Sprayed Wollastonite Coating, Biomaterials, 2005, 26, p 3455-3460
    10. W.C. Xue, X.Y. Liu, X.B. Zheng, and C.X. Ding, Dissolution and Mineralization of Plasma-Sprayed Wollastonite Coatings WITH Different Crystallinity, Surf. Coat. Technol., 2005, 200, p 2420-2427
    11. X. Shen, H.S. Xu, S.Q. Liu, and J.S. Pang, Experimental Study on Biological Characteristics of the Wollastonite Coating for Implant Applications, J. Tissue Eng. Reconstr. Surg., 2009, 5(3), p 148-149
    12. D.B. Marshall, T. Noma, and A.G. Evans, A Simple Method for Determining Elastic-Modulus-to-Hardness Ratios Using Knoop Indentation Measurements, J. Am. Ceram. Soc., 1982, 65, p 6 (C-175- 6)
    13. Z.F. Zhu, Corrosion Resistance and Applications of Non-Ferrous Metals, Chemical Industry Press, Beijing, 1995 (in Chinese)
    14. R. Mcpherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95
    15. A. Ohmori and C.J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252
    16. S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings, Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272, p 181-188
    17. M. Lv and J. Wu, XRD Analysis of Residual Stress on the Surface of Glass-Ceramic & Ceramic Composite Tile, Chin. Ceram., 2007, 43, p 21-23
    18. C.J. Li, A. Ohmori, and R. Mcpherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32, p 997-1004
    19. M. Hamidouche, N. Bouaouadja, H. Osmani, R. Torrecillias, and G. Fantozzi, Thermomechanical Behavior of Mullite–Zirconia Composite, J. Eur. Ceram. Soc., 1996, 16, p 441-445
    20. X. Liu, Study on Plasma Sprayed Bioactive Wollastonite Coatings, PhD Thesis, Shanghai Institute of ceramics, Chinese Academy of Sciences, Shanghai, 2002
    21. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma Sprayed Coating, Thin Solid Films, 1981, 83, p 297-310
    22. O. Sarikaya, Effect of the Substrate Temperature on Properties of Plasma Sprayed Al2O3 Coatings, Mater. Des., 2005, 26, p 53-57
    23. C.J. Li and J.L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Technol., 2004, 184, p 13-23
    24. Y.Z. Xing, C.J. Li, C.X. Li, H.G. Long, and Y.X. Xie, Microstructure Development of Plasma-Sprayed Yttria-Stabilized Zirconia and Its Effect on Electrical Conductivity, Solid State Ionics, 2008, 179, p 1483-1485
    25. K.A. Gross, S. Saber-Samandari, and K.S. Heemann, Evaluation of Commercial Implants with Nano-Indentation Defines Future Development Needs for Hydroxyapatite Coatings, J. Biomed. Mater. Res. B, 2010, 93(1), p 1-8
    26. L. Sun, C.C. Berndt, and C.P. Grey, Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mat. Sci. Eng. A, 2003, 360, p 70-84
    27. S. Dru, E. Meillot, K. Wittmann-Teneze, R. Benoit, and M.L. Saboungi, Plasma Spraying of Lanthanum Silicate Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs), Surf. Coat. Technol., 2010, 205(4), p 1060-1064
    28. S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., 1997, 80(8), p 2093-2099
    29. S.W.K. Kweh, K.A. Khor, and P. Cheang, Plasma-Sprayed Hydroxyapatite (HA) Coatings with Flame-Spheroidized Feedstock: Microstructure and Mechanical Properties, Biomaterials, 2000, 21, p 1223-1234
    30. R.C. Rossi, Prediction of the Elastic Moduli of Composites, J. Am. Ceram. Soc., 1968, 51(8), p 433-439
    31. F. Tang and M.S. Julie, Evolution of Young’s Modulus of Air Plasma Sprayed Yttria-Stabilized Zirconia in Thermally Cycled Thermal Barrier Coatings, Scr. Mater., 2006, 54(9), p 1587-1592
    32. Y. Chen, S.R. Bakshi, and A. Agarwal, Intersplat Friction Force and Splat Sliding in a Plasma-Sprayed Aluminum Alloy Coating During Nanoindentation and Microindentation, ACS Appl. Mater. Interfaces, 2009, 1(2), p 235-238
    33. H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technol., 2002, 155, p 21-32
    34. J. Ma, C.Z. Chen, and D.G. Wang, Influence of the Sintering Temperature on the Structural Feature and Bioactivity of Sol-Gel Derived SiO2-CaO-P2O5 Bioglass, Ceram. Inter., 2010, 36, p 1911-1916
    35. O. Peitl, E.D. Zanotto, and L.L. Hench, Highly Bioactive P2O5-Na2O-CaO-SiO2 Glass-Ceramics, J. Non-Cryst. Solids, 2001, 292, p 115-126
    36. C. Ohtsuki, T. Kokubo, and T. Yamamuro, Mechanism of Apatite Formation on CaO-SiO2-P2O5 Glasses in a Simulated Body Fluid, J. Non-Cryst. Solids, 1992, 143, p 84-92
    37. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, and T. Nakamura, Process of Formation of Bone-Like Apatite Layer on Silica Gel, J. Mater. Sci., 1993, 4, p 127-131
  • 作者单位:1. Key Lab of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China2. Marine Engineering college, Dalian Maritime University, Dalian, 116026 People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
The effect of substrate temperature on the microstructure, mechanical properties and dissolution behavior of wollastonite coatings is investigated. The crystallinity of as-deposited coatings increases with increasing substrate temperature, whereas the porosity shows only a little variable tendency. The Knoop hardness and elastic modulus increase with the substrate temperature up to 400 °C firstly, and then a decrement is observed with the temperature further increasing to 600 °C. The dissolution rate characterized by the pH changes and the ion concentration changes of Ca, Si and P in SBF decreases with the increase in the substrate temperature. It can be concluded that increasing the substrate temperature is a feasible method to improve the mechanical properties and to decrease the dissolution rate of wollastonite coatings. However, the bioactivity of coatings deposited on preheated substrates is superior to those on non-preheated ones, which presumably results from their different phase compositions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700