The influence of reagents on the preparation of Cu nanowires by tetradecylamine-assisted hydrothermal method
详细信息    查看全文
  • 作者:Baorui Jia (1)
    Mingli Qin (1)
    Zili Zhang (1)
    Aimin Chu (1)
    Lin Zhang (1)
    Ye Liu (1)
    Xuanhui Qu (1)
  • 刊名:Journal of Materials Science
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:48
  • 期:11
  • 页码:4073-4080
  • 全文大小:839KB
  • 参考文献:1. Xu WH, Zhang YX, Guo Z, Chen X, Liu JH, Huang XJ, Yu SH (2012) Small 8:53-8. doi:10.1002/smll.201101445 CrossRef
    2. Hu LB, Kim HS, Lee JY, Peumans P, Cui Y (2010) ACS Nano 4:2955-963. doi:10.1021/nn1005232 CrossRef
    3. Xiao GZ, Tao Y, Lu JP, Zhang ZY, Kingston D (2011) J Mater Sci 10:3399. doi:10.1007/s10853-010-5228-3 CrossRef
    4. Lipscomb LD, Vichchulada P, Bhatt NP, Zhang QH, Lay MD (2011) J Mater Sci 46:6812. doi:10.1007/s10854-011-0367-0 CrossRef
    5. Kumar A, Zhou CW (2010) ACS Nano 4:11-4. doi:10.1021/nn901903b CrossRef
    6. Rathmell AR, Wiley BJ (2011) Adv Mater 23:4798-803. doi:10.1002/adma.201102284 CrossRef
    7. Choi H, Park S (2004) J Am Chem Soc 126:6248-249. doi:10.1021/ja049217 CrossRef
    8. Malandrino G, Finocchiaro ST, Nigro RL, Bongiorno C, Spinella C, Fragalà IL (2004) Chem Mater 16:5559-561. doi:10.1021/cm048685f CrossRef
    9. Shimotsuma Y, Yuasa T, Homma H, Sakakura M, Nakao A, Miura K, Hirao K, Kawasaki M, Qiu J, Kazansky PG (2007) Chem Mater 19:1206-208. doi:10.1021/cm062592b CrossRef
    10. Molars MET, Dobrev VBDD, Neumann R, Scholz R, Schuchert IU, Vetter J (2001) Adv Mater 13:63-5. doi:0935-9648/01/0101-0064
    11. Gao T, Meng GW, Wang YW, Sun SH, Zhang LD (2001) J Phys: Condens Mater 14:355-63. doi:10.1088/0953-8984/14/3/306 CrossRef
    12. Zhao YX, Zhang Y, Li YP, Yan ZF (2012) New J Chem 36:130-38. doi:10.1039/C1NJ20800D CrossRef
    13. Chang Y, Lye ML, Zeng HC (2005) Langmuir 21:3746-748. doi:10.1021/la050220w CrossRef
    14. Jin MS, He GN, Zhang H, Zeng J, Xie ZX, Xia YN (2011) Angew Chem Int Ed 50:10560-0564. doi:10.1002/anie.201105539 CrossRef
    15. Liu ZP, Yang Y, Liang JB, Hu ZK, Li S, Peng S, Qian YT (2003) J Phys Chem B 107:12658-2661. doi:10.1021/jp036023s CrossRef
    16. Zhang XJ, Zhang DG, Ni XM, Zheng HG (2006) Solid State Commun 139:412-14. doi:10.1016/j.ssc.2006.06.042 CrossRef
    17. Pradel KC, Sohn K, Huang JX (2011) Angew Chem Int Ed 50:3412-416. doi:10.1002/anie.201100087 CrossRef
    18. Ye EY, Zhang SY, Liu SH, Han MY (2011) Chem Eur J 17:3074-077. doi:10.1002/chem.201002987 CrossRef
    19. Dempsey DG, Kleinmanm L (1977) Phys Rev B 16:5356-366. doi:10.1103/PhysRevB.63.224106 CrossRef
    20. Gilles RB, Lennox RB (2010) J Am Chem Soc 132:6657-659. doi:10.1021/ja101579v CrossRef
    21. Lu QY, Gao F, Zhao DY (2002) Nano Lett 2:725-28. doi:10.1021/nl025551x CrossRef
    22. Wang HS, Qian XL, Chen JG, Ding SY (2005) Colloid Surf A 256:111-15. doi:10.1016/j.colsurfa.2004.12.058 CrossRef
    23. Gai PL, Harmer MA (2002) Nano Lett 2:771-74. doi:10.1021/nl0202556 CrossRef
    24. Venables JA (2000) Introduction to surface and thin film processes. Cambridge University Press, Cambridge CrossRef
    25. Wiley B, Sun YG, Mayers B, Xia YN (2005) Chem Eur J 11:454-63. doi:10.1002/chem.200400927 CrossRef
    26. Mohl M, Pusztai P, Kukovecz A, Konya Z (2010) Langmuir 26:16496-6502. doi:10.1021/la101385e CrossRef
    27. Jin MS, Zhang H, Wang JG, Zhong XL, Lu N, Li ZY, Xie ZX, Kim MJ, Xia YN (2012) ACS Nano 6:2566-573. doi:10.1021/nn2050278 CrossRef
  • 作者单位:Baorui Jia (1)
    Mingli Qin (1)
    Zili Zhang (1)
    Aimin Chu (1)
    Lin Zhang (1)
    Ye Liu (1)
    Xuanhui Qu (1)

    1. School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People’s Republic of China
  • ISSN:1573-4803
文摘
Copper (Cu) nanowires are inexpensive conducting nanomaterials intensively explored for transparent conducting electrodes and other applications. Here, Cu nanowires with approximately 40-nm diameter and a few hundreds of micrometers in length were selectively and facilely synthesized by a tetradecylamine (TDA)-assisted hydrothermal method. The Cu nanowires were highly flexible and were not oxidized by oxygen in air because of TDA’s effective coating on the Cu nanowires, which was confirmed by SEM observation and FT-IR spectrum. Moreover, the Cu nanowires tended to self-assemble into close-packed bundles due to hydrophobic–hydrophobic interactions between alkyl chains of TDA. The roles of the reagents in the preparation process were investigated systematically. First, a proper concentration of TDA was essential to high-quality Cu nanowires and TDA had two effects: (1) TDA molecules could coordinate with copper cations to form Cu(II)-complex, which was then reduced to Cu by glucose; (2) In the growth mechanism of Cu nanowires, the newly formed side surfaces, {100} facets, was stabilized through chemical interactions with the nitrogen atom of TDA (capping agent). With regards to Cu source, when using cupric chloride, cupric nitride, cupric acetate, and cupric bromide, Cu nanomaterials with a variety of shapes such as nanowires, nanoparticles, hollow spheres, and nanoflakes could be obtained. Among these Cu sources, cupric chloride was a proper selection for the preparation of Cu nanowires. About reductant agents, glucose could be replaced by other reductant agents such as VC. The UV–Vis absorption spectrum showed that the Cu nanowires had an absorption peak at 580?nm and a slightly higher transmittance in the visible region. These Cu nanowires were expected to find widespread use in the applications such as fabrication of transparent electrodes for flexible electronics and display devices. This TDA-assisted hydrothermal method could be expanded to preparation of different types of Cu nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700