Silk-silk blend materials
详细信息    查看全文
  • 作者:Ye Xue ; Dave Jao ; Wenbing Hu ; Xiao Hu
  • 关键词:DSC ; FTIR ; Silk fibroin ; Glass transition temperature ; Miscibility
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:127
  • 期:1
  • 页码:915-921
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Physical Chemistry; Analytical Chemistry; Polymer Sciences; Inorganic Chemistry; Measurement Science and Instrumentation;
  • 出版者:Springer Netherlands
  • ISSN:1588-2926
  • 卷排序:127
文摘
Silk fibroin materials can be used as various kinds of biomedical materials. Here, we report a comparative study of silk-silk blend materials using thermal analysis and infrared spectroscopy. Four groups of silk-silk blend films were fabricated from aqueous solutions by blending Chinese Bombyx mori (Mori) with Indian Antheraea mylitta (Tussah) silk fibroin (Mori-Tussah), Mori with Antheraea assama (Muga) silk fibroin (Mori-Muga), Mori with Philosamia ricini (Eri) silk fibroin (Mori-Eri), and Mori with Thailand mulberry (Thai) silk fibroin (Mori-Thai), respectively. These silk-silk blend systems exploit the beneficial material properties of both silks. Glass transition temperatures (Tg), heat capacity increments at Tg, and degradation temperatures (Td) of these water-based silk-silk blend films were measured by differential scanning calorimetry (DSC) and temperature-modulated DSC (TMDSC). It was found that those silk-silk film systems were well-blended without macrophase separation. And glass transition temperatures and degradation temperatures of those silk-silk blend films can be controlled by changing the mass ratio of different silks in the blend system. Fourier transform infrared spectrometer (FTIR) was used to characterize secondary structures of silk-silk blends. The contents of alpha-helix and random coils are tunable through changing the contents of Tussah, Muga, Eri, or Thai silk in the blend system. The study demonstrates that Mori silk are fully miscible with Tussah, Muga, Eri, and Thai silk at different mass ratios, and the features of Mori silk combined with the attributes of Tussah, Muga, Eri, and Thai silk offer a useful suite of materials for a variety of applications in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700