Behavior of the plasma characteristic and droplet transfer in CO2 laser–GMAW-P hybrid welding
详细信息    查看全文
  • 作者:Wang Zhang (1) (2)
    Xueming Hua (1) (2)
    Wei Liao (1) (2)
    Fang Li (1) (2)
    Min Wang (1) (2)
  • 关键词:Plasma characteristic ; Droplet transfer ; Hybrid welding ; GMAW ; P
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:72
  • 期:5-8
  • 页码:935-942
  • 全文大小:
  • 参考文献:1. Bagger C, Olsen FO (2005) Review of laser hybrid welding. J Laser Appl 17(1):1-3 CrossRef
    2. Choi H, Farson D, Cho M (2006) Using a hybrid laser plus GMAW process for controlling the bead humping defect. Weld J 85(8):174-79
    3. Xu GX, Wu CS, Qin GL, Wang XY, Lin SY (2011) Adaptive volumetric heat source models for laser beam and laser-?pulsed GMAW hybrid welding processes. Int J Adv Manuf Technol 57(1-):245-55 CrossRef
    4. Ghosal S, Chaki S (2010) Estimation and optimization of depth of penetration in hybrid CO2 LASER-MIG welding using ANN-optimization hybrid model. Int J Adv Manuf Technol 47(9):1149-157 CrossRef
    5. Campana G, Fortunato A, Ascari A, Tani G, Tomesani L (2007) The influence of arc transfer mode in hybrid laser-MIG welding. J Mater Process Technol 191(1):111-13 CrossRef
    6. Liu S, Liu F, Xu C, Zhang H (2013) Experimental investigation on arc characteristic and droplet transfer in CO2 laser–metal arc gas (MAG) hybrid welding. Int J Heat Mass Transf 62:604-11 CrossRef
    7. Liu S, Liu F, Zhang H, Shi Y (2012) Analysis of droplet transfer mode and forming process of weld bead in CO2 laser–MAG hybrid welding process. Opt Laser Technol 44:1019-025 CrossRef
    8. Chen Y, Feng J, Li L, Li Y, Chang S (2013) Effects of welding positions on droplet transfer in CO2 laser–MAG hybrid welding. Int J Adv Manuf Technol 68(5-):1351-359 CrossRef
    9. Hu J, Tsai H (2007) Metal transfer and arc plasma in gas metal arc welding. Trans Am Soc Mech Eng J Heat Transf 129(8):1025-035 CrossRef
    10. Shao Y, Wang Z, Zhang Y (2011) Monitoring of liquid droplets in laser-enhanced GMAW. Int J Adv Manuf Technol 57(1-):203-14 CrossRef
    11. Gao Z, Wu Y, Huang J (2009) Analysis of weld pool dynamic during stationary laser–MIG hybrid welding. Int J Adv Manuf Technol 44(9-0):870-79 CrossRef
    12. Choi S, Yoo C, Kim Y (1999) The dynamic analysis of metal transfer in pulsed current gas metal arc welding. J Phys D Appl Phys 31(2):207-15 CrossRef
    13. Palani P, Murugan N (2006) Selection of parameters of pulsed current gas metal arc welding. J Mater Process Technol 172(1):1-0 CrossRef
    14. Wu C, Chen M, Lu Y (2005) Effect of current waveforms on metal transfer in pulsed gas metal arc welding. Meas Sci Technol 16(12):2459-465 CrossRef
    15. Zhang Y, Li P (2001) Modified active control of metal transfer and pulsed GMAW of titanium. Weld J (USA) 80(2):54-0
    16. Zhang T, Wu CS, Qin GL, Wang XY, Lin SY (2010) Thermomechanical analysis for laser-?GMAW-P hybrid welding process. Comput Mater Sci 47(3):848-56 CrossRef
    17. Tani G, Campana G, Fortunato A, Ascari A (2007) The influence of shielding gas in hybrid LASER–MIG welding. Appl Surf Sci 253(19):8050-053 CrossRef
    18. Ueguri S, Hara K, Komura H (1985) Study of metal transfer in pulsed GMA welding. Weld J 64(8):242s-50s
    19. Ghosh P, Dorn L, Hübner M, Goyal V (2007) Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of aluminium alloy. J Mater Process Technol 194(1-):163-75 CrossRef
    20. Roepke C, Liu S, Kelly S, Martukanitz R (2010) Hybrid laser arc welding process evaluation on DH36 and EH36 steel. Weld J 89(7):140-49
    21. Huang Y, Zhang Y (2011) Laser enhanced metal transfer: Part 1. System and observations. Weld J 90:183s-90s
    22. Mousavi Anzehaee M, Haeri M (2011) Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process. ISA Trans 50(3):409-18 CrossRef
    23. Rhee S, Kim JH, Kim CH, Chae HB (2008) The effect of shielding gas composition in CO2 laser–gas metal arc hybrid welding. Proc Inst Mech Eng B J Eng Manuf 222(11):1315-324 CrossRef
    24. HUA X-m, TAN X-w, LI M-x, YE X, WANG F (2011) High speed video photography system based on principle of optical polarization. J Shanghai Jiaotong Univ 45(01):101-04
    25. Rouffet ME, Wendt M, Goett G, Kozakov R, Schoepp H, Weltmann KD, Uhrlandt D (2010) Spectroscopic investigation of the high-current phase of a pulsed GMAW process. J Phys D Appl Phys 43(43):434003 CrossRef
    26. Stute U, Kling R, Hermsdorf J (2007) Interaction between electrical arc and Nd: YAG laser radiation. CIRP Annals Manuf Technol 56(1):197-00 CrossRef
    27. Shinn B, Farson D, Denney P (2005) Laser stabilisation of arc cathode spots in titanium welding. Sci Technol Weld Join 10(4):475-81 CrossRef
    28. Reis RP, Souza MD, Scotti A (2011) Models to describe plasma jet, arc trajectory and arc blow formation in arc welding. Weld World 55(3-):24-2 CrossRef
    29. B Jüttner (1997) Properties of arc cathode spots. Le Journal de Physique IV 7 (C4): C4-1–C34-5
    30. Zhang W, Hua X, Liao W, Li F, Wang M (2014) Study of metal transfer in CO2 laser-?GMAW-P hybrid welding using argon–helium mixtures. Opt Laser Technol 56:158-66 CrossRef
  • 作者单位:Wang Zhang (1) (2)
    Xueming Hua (1) (2)
    Wei Liao (1) (2)
    Fang Li (1) (2)
    Min Wang (1) (2)

    1. Shanghai Key Laboratory of Material Laser Processing and Modification, Shanghai Jiaotong University, Shanghai, 200240, People’s Republic of China
    2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, 200240, People’s Republic of China
  • ISSN:1433-3015
文摘
The plasma behavior and metal transfer in CO2 laser-?GMAW-P hybrid welding have been investigated. A 650?nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. The effect of the mutual distance and laser power on the metal transfer has been discussed. The results indicate that the laser-induced plasma plume have a significant impact to the arc shape, resistance, electrode melting, droplet formation, detachment, and impingement onto the workpiece. The laser-induced plasma changes the conductive path and forces affecting on the droplet. High laser power and short distance between laser beam and arc (DLA) reduce the pulse base time (PB) of the voltage of phase, increase the droplet detachment time (PD) and the pulse current time (PP) of the voltage of phase, and it also lead to an upward and inward force near the bottom of the droplet. As a consequence, the droplet formation time is increased, and eventually an off-axis droplet phenomenon is deduced. The vapor jet force induced by the the keyhole plasma acts on the droplet as a retention force; this force decreases when the DLA becomes larger and increases when the laser power becomes higher. The observation may help in understanding the weld characteristics with respect to variation in mutual distance and laser power which may be beneficial in using the main process parameters to produce desired weld quality.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700