Effects of Humic Acid and Solution Chemistry on the Retention and Transport of Cerium Dioxide Nanoparticles in Saturated Porous Media
详细信息    查看全文
  • 作者:Xueyan Lv ; Bin Gao ; Yuanyuan Sun ; Xiaoqing Shi ; Hongxia Xu…
  • 关键词:Cerium oxide ; Engineered nanoparticles ; Solution chemistry ; Humic acid ; Transport ; Model
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:225
  • 期:10
  • 全文大小:1,100 KB
  • 参考文献:1. Auffan, M., Rose, J., Orsiere, T., De Meo, M., Thill, A., Zeyons, O., et al. (2009). CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. / Nanotoxicology, 3, 161-71. CrossRef
    2. Ben-Moshe, T., Dror, I., & Berkowitz, B. (2010). Transport of metal oxide nanoparticles in saturated porous media. / Chemosphere, 81, 387-93. CrossRef
    3. Buettner, K. M., Rinciog, C. I., & Mylon, S. E. (2010). Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. / Colloids and Surfaces A: Physicochemical and Engineering Aspects, 366, 74-9. CrossRef
    4. Chen, G. X., Liu, X. Y., & Su, C. M. (2012). Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. / Environmental Science & Technology, 46, 7142-150. CrossRef
    5. Feng, X. D., Her, Y.-S., Linda, W., Davis, J., Oswald, E., Lu, J., et al. (2003). CeO2 particles for chemical mechanical planarization. / MRS Proceedings, 767, 173-83. CrossRef
    6. Franchi, A., & O’Melia, C. R. (2003). Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. / Environmental Science & Technology, 37, 1122-129. CrossRef
    7. Godinez, I. G., & Darnault, C. J. G. (2011). Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity. / Water Research, 45, 839-51. CrossRef
    8. Hahn, M. W., Abadzic, D., & O’Melia, C. R. (2004). Aquasols: on the role of secondary minima. / Environmental Science & Technology, 38, 5915-924. CrossRef
    9. Hernandez-Viezcas, J. A., Castillo-Michel, H., Andrews, J. C., Cotte, M., Rico, C., Peralta-Videa, J. R., et al. (2013). In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (glycine max). / ACS Nano, 7, 1415-423. CrossRef
    10. Imagawa, H., Suda, A., Yamamura, K., & Sun, S. H. (2011). Monodisperse CeO2 nanoparticles and their oxygen storage and release properties. / Journal of Physical Chemistry C, 115, 1740-745. CrossRef
    11. Izu, N., Shin, W., Murayarna, N., & Kanzaki, S. (2002). Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis. / Sensors and Actuators B: Chemical, 87, 95-8. CrossRef
    12. Johnson, P. R., Sun, N., & Elimelech, M. (1996). Colloid transport in geochemically heterogeneous porous media: Modeling and measurements. / Environmental Science & Technology, 30, 3284-293. CrossRef
    13. Jones, E. H., & Su, C. M. (2012). Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. / Water Research, 46, 2445-456. CrossRef
    14. Keller, A. A., Wang, H. T., Zhou, D. X., Lenihan, H. S., Cherr, G., Cardinale, B. J., et al. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. / Environmental Science & Technology, 44, 1962-967. CrossRef
    15. Lanphere, J. D., Luth, C. J., & Walker, S. L. (2013). Effects of solution chemistry on the transport of graphene oxide in saturated porous media. / Environmental Science & Technology, 47, 4255-261. CrossRef
    16. Li, K. G., & Chen, Y. S. (2012). Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: Measurements and modeling. / Journal of Hazardous Materials, 209, 264-70. CrossRef
    17. Li, Z., Sahle-Demessie, E., Hassan, A. A., & Sorial, G. A. (2011). Transport and deposition of CeO2 nanoparticles in water-saturated porous media. / Water Research, 45, 4409-418. CrossRef
    18. Liang, Y., Bradford, S. A., Simunek, J., Vereecken, H., & Klumpp, E. (2013). Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. / Water Research, 47, 2572-582. CrossRef
    19. Liu, L., Gao, B., Wu, L., Morales, V. L., Yang, L. Y., Zhou, Z. H., et al. (2013). Deposition and transport of graphene oxide in saturated and unsaturated porous media. / Chemical Engineering Journal, 229, 444-49. CrossRef
    20. Lopez-Moreno, M. L., de la Rosa, G., Hernandez-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., et al. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (glycine max) plants. / Environmental Science & Technology, 44, 7315-320. CrossRef
    21. Moller, P., Morteani, G., & Dulski, P. (2003). Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (Provinces Trento and Bolzano/Bozen, NE Italy). / Acta Hydrochimica et Hydrobiologica, 31, 225-39. CrossRef
    22. Morales, V. L., Zhang, W., Gao, B., Lion, L. W., Bisogni, J. J., Jr., McDonough, B. A., et al. (2011). Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics. / Water Research, 45, 1691-701. CrossRef
    23. Pati, R. K., Lee, I. C., Chu, D. R., Hou, S. C., & Ehrman, S. H. (2004). Nanosized ceria-based water-gas shift (WGS) catalyst for fuel cell applications. / Abstracts of Papers of the American Chemical Society, 228, 686.
    24. Petosa, A. R., Brennan, S. J., Rajput, F., & Tufenkji, N. (2012). Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. / Water Research, 46, 1273-285. CrossRef
    25. Petosa, A. R., Ohl, C., Rajput, F., & Tufenkji, N. (2013). Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters. / Water Research, 47, 5889-900. CrossRef
    26. Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. / Environmental Science & Technology, 42, 3349-355. CrossRef
    27. Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wiesner, M. R., et al. (2010). Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. / Environmental Science & Technology, 44, 4897-902. CrossRef
    28. Tian, Y., Gao, B., Wang, Y., Morales, V. L., Carpena, R. M., Huang, Q. G., et al. (2012a). Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns. / Journal of Hazardous Materials, 213, 265-72. CrossRef
    29. Tian, Y., Gao, B., Wu, L., Munoz-Carpena, R., & Huang, Q. (2012b). Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media. / Journal of Hazardous Materials, 231, 79-7. CrossRef
    30. Van Hoecke, K., De Schamphelaere, K. A. C., Van der Meeren, P., Smagghe, G., & Janssen, C. R. (2011). Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. / Environmental Pollution, 159, 970-76. CrossRef
    31. Van Hoecke, K., Quik, J. T. K., Mankiewicz-Boczek, J., De Schamphelaere, K. A. C., Elsaesser, A., Van der Meeren, P., et al. (2009). Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. / Environmental Science & Technology, 43, 4537-546. CrossRef
    32. Wang, D., Su, C., Liu, C., & Zhou, D. (2014). Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. / Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 58-6. CrossRef
    33. Wang, D. J., Bradford, S. A., Harvey, R. W., Gao, B., Cang, L., & Zhou, D. M. (2012a). Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. / Environmental Science & Technology, 46, 2738-745. CrossRef
    34. Wang, D. J., Chu, L. Y., Paradelo, M., Peijnenburg, W. J. G. M., Wang, Y. J., & Zhou, D. M. (2011). Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition. / Journal of Colloid and Interface Science, 360, 398-07. CrossRef
    35. Wang, Y., Gao, B., Morales, V. L., Tian, Y., Wu, L., Gao, J., et al. (2012b). Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. / Journal of Nanoparticle Research, 14, 1095. CrossRef
  • 作者单位:Xueyan Lv (1)
    Bin Gao (2)
    Yuanyuan Sun (1)
    Xiaoqing Shi (1)
    Hongxia Xu (1)
    Jichun Wu (1)

    1. Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210093, China
    2. Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
  • ISSN:1573-2932
文摘
When released into natural aquatic systems, cerium oxide (CeO2) nanoparticles (NPs) may have toxic effects to the ecosystems and public health; it is thus important to understand their environmental fate and transport. This work studied the effects of humic acid (HA) concentrations (0-0?mg?L?) and solution chemistry (ionic strength (IS) and pH) on the retention and transport of CeO2 NPs in water-saturated porous media under environmental relevant conditions. HA and IS showed remarkable effect on the retention and transport of CeO2 NPs in the porous media. Even at low concentrations (i.e., 5 and 10?mg?L?), HA stabilized CeO2 NPs in the suspensions by introducing both negative surface charge and steric repulsion and thus enhanced their mobility in the porous media. When solution HA concentration increased or ionic strength decreased, mobility of CeO2 NPs?in the porous media enhanced dramatically. Solution pH, however, had little influence on the mobility of the CeO2 NPs under the tested experimental conditions, and increasing solution pH only slightly increased the transport of the NPs. Mathematical models were applied to describe the experimental data. Predictions from the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory and advection–dispersion–reaction (ADR) model matched the experimental data well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700