Effects of spirotetramat treatments on fecundity and carboxylesterase expression of Aphis gossypii Glover
详细信息    查看全文
  • 作者:Youhui Gong ; Xueyan Shi ; Nicolas Desneux ; Xiwu Gao
  • 关键词:Cotton aphid ; Toxicity ; Fecundity ; Carboxylesterase ; CarE induction
  • 刊名:Ecotoxicology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:25
  • 期:4
  • 页码:655-663
  • 全文大小:513 KB
  • 参考文献:Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef
    Bretschneider T, Fischer R, Nauen R (2009) Inhibitors of lipid synthesis. In: Kramer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-vch GmbH & Co. KGaA, Weinheim, pp 909–925
    Bruck E, Elbert A, Fischer R, Krueger S, Kuhnhold J, Klueken AM, Nauen R, Niebes JF, Reckman U, Schnorbach HJ, Steffens R, van Waetermeulen X (2009) Movento®, an innovative ambimobile insecticide for suckinginsect pest control in agriculture: biological profile and field performance. Crop Prot 28:838–844CrossRef
    Cai QN, Han Y, Cao YZ, Hu Y, Zhao X, Bi JL (2009) Detoxification of gramine by the cereal aphid Sitobion avenae. J Chem Ecol 35:320–325CrossRef
    Campolo O, Chiera E, Malacrinò A, Laudani F, Fontana A, Albanese GR, Palmeri V (2014) Acquisition and transmission of selected CTV isolates by Aphis gossypii. J Asia Pac Entomol 17:493–498CrossRef
    Cantoni A, De Maeyer L, Izquierdo Casas J, Niebes JF, Peeters D, Roffeni S, Silva J, Villalobos A (2008) Development of Movento® on key pests and crops in European countries. Bayer CropSci J 61:349–376
    Cao CW, Zhang J, Gao XW (2008) Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pestic Biochem Phys 90:175–180CrossRef
    Devonshire L, Moores GD (1982) A carboxylesterase with broad substrate specificity causes organophoyus, carbamate and pyrethroid resistance in peachpotato aphids (myzus persicae). Pestic Biochem Phys 18:235–246CrossRef
    Elbert A, Nauen R, Salmon E (2008) Resistance management guidelines for the new ketoenol insecticide Movento®. Bayer CropSci J 61:403–416
    Feyereisen R (2005) Insect cytochrome P450. In: Gilbert LI, Latrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier, Amsterdam
    Garcerá C, Ouyang YL, Scott SJ, Moltó E, Grafton-Cardwell EE (2013) Effects of spirotetramat on Aonidiella aurantii (Homoptera: Diaspididae) and its parasitoid, Aphytis melinus (Hymenoptera: Aphelinidae). J Econ Entomol 106:21–26CrossRef
    Hemingway J, Hawkes NJ, Mccarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Molec 34:653–665CrossRef
    Hu J, Wang C, Wang J, You Y (2010) Monitoring of resistance to spirodiclofen and five other acaricides in Panonychuscitri collected from Chinese citrus orchards. Pest Manag Sci 66:1025–1030CrossRef
    Kay IR, Herron GA (2010) Evaluation of existing and newinsecticides including spirotetramat and pyridalyl to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on peppers in Queensland. Aust J Entomol 49:175–181CrossRef
    Koester J, Klempner A (2006) [Azaspirodecenyl-3-14C]BYI 08330: Absorption, distribution, excretion, and metabolism in the lactating goat; Bayer CropScience AG, Monheim, Germany; Report No.: MEF-05/293; Document No.: M-269256-01-2; 05-MAY-06, p 213
    Li F, Han ZJ, Wu ZF, Wang YC (2001) Insecticide resistance of Aphis gossypii Glover in cotton in China. Cotton Sci 13:121–124
    Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253CrossRef
    Lindroth RL, Weisbrod AV (1991) Genetic variation in response of the gypsy moth to aspen phenolic glycosides. Biochem Syst Ecol 19:97–103CrossRef
    Marčić D (2007) Sublethal effects of spirodiclofen on life history and life-table parameters of two-spotted spider mite (Tetranychusurticae). Exp Appl Acarol 42:121–129CrossRef
    Marčić D, Ogurlić I, Mutavdžić S, Perić P (2010) The effects of spiromesifen on life history traits and population growth of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 50:255–267CrossRef
    Marčić D, Mutavdžić S, Medjo I, Prijović M, Perić P (2011a) Spirotetramat toxicity to immatures and sublethal effects on fecundity of female adults of Tetranychusurticae Koch. Zoosymposia 6:99–103
    Marčić D, Perić P, Petronijević S, Prijović M, Drobnjaković T (2011b) Cyclic ketoenols—acaricides and insecticides with a novel mode of action. Pestic Phytomed (Belgrade) 26:185–195CrossRef
    Maus C (2008) Ecotoxicological profile of the insecticide spirotetramat. Bayer CropSci J 61:159–180
    Moores GD, Gao X, Denholm I, Devonshire AL (1996) Characterisation of insensitive acetylcholines in insecticide-resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae). Pestic Biochem Physiol 56:102CrossRef
    Nauen R, Schnorbach HJ, Elbert A (2005) Biological profile of spiromesifen (Oberon®)—a new tetronic acid insecticide/acaricide. Pflanzenschutz-Nachrichten Bayer 58:417–440
    Nauen R, Reckmann U, Thomzik J, Thielert W (2008) Biological profile of spirotetramat (Movento®)—a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer CropSci J 61:245–278
    O’Brien PJ, Abdel-Aal YA, Ottea JA, Graves JB (1992) Relationship of insecticide resistance to carboxylesterases in Aphis gossypii (Homoptera: Apididae) from midsouth cotton. J Econ Entomol 85:651–657CrossRef
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:6CrossRef
    Planes L, Catalán J, Tena A, Porcuna J, Jacas J, Izquierdo J, Urbaneja A (2013) Lethal and sublethal effects of spirotetramat on the mealybug destroyer Cryptolaemus montrouzieri. J Pest Sci 86:321–327CrossRef
    Qiao CL, Cui F, Yan SG (2009) Structure, function and applications of carboxylestrases from insects for insecticide resistance. Protein Pept Lett 16:1181–1188CrossRef
    Rauch N, Nauen R (2002) Spirodiclofen resistance risk assessment in Tetranychusurticae (Acari: Tetranychidae): a biochemical approach. Pestic Biochem Phys 74:91–101CrossRef
    Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP (2009) Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat Toxicol 93:61–69CrossRef
    Roistacher CN, Bar-Joseph M, Gumpf DJ (1984) Transmission of tristeza and seedling yellows tristeza virus by small populations of Aphis gossypii. Plant Dis 68:494–496CrossRef
    Schnorbach J, Elbert A, Laborie B, Navacerrada J, Bangels E, Gobin B (2008) Movento®, an ideal tool for Integrated Pest Management (IPM) in pome fruit, citrus and vegetables. Pflanzenschutz-Nachrichten Bayer 61:411–436
    Sun YQ, Feng GL, Yuan JG, Zhu P, Gong KY (1987) Biochemical mechanism of resistance of cotton aphids to organophosphorus insecticides. Acta Entomol Sin 30:13–20
    Sun YQ, Feng GL, Yuan JG, Gong KY (1994) Insecticide resistance of cotton aphid in North China. Entomol Sin. 1:242–250
    Suwanchaichinda C, Brattsten LB (2001) Effects of exposure to pesticides on carbaryl toxicity and cytochrome P450 activities in Aedes albopictus larvae (Diptera: Culicidae). Pestic Biochem Physiol 70:63–73CrossRef
    Suwanchaichinda C, Brattsten LB (2002) Induction of microsomal cytochrome P450 s by tire-leachate compounds, habitat components of Aedes albopictus mosquito larvae. Arch Insect Biochem Physiol 49:71–79CrossRef
    Suzuki K, Hama H, Konno Y (1993) Carboxylesterase of the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), responsible for fenitrothion resistance as a sequestering protein. Appl Entomol Zool 28:439–450
    Van Asperen K (1962) A study of housefly esterases by means of sensitive colorimetric method. J Insect Physiol 8:401–416CrossRef
    van Pottelberge S, Khajehali J, van Leeuwen T, Tirry L (2009a) Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychusurticae (Acari: Tetranychidae). Exp Appl Acavol 47:301–309CrossRef
    van Pottelberge S, van Leeuwen T, Khajehali J, Tirry L (2009b) Genetic and biochemical analysis of a laboratory- selected spirodiclofen-resistant strain of Tetranychusurticae Koch (Acari: Tetranychidae). Pest Manag Sci 65:358–366CrossRef
    Van Waetermeulen X, Brück E, Elbert A, Fischer R, Krueger S, Kühnhold J, Nauen R, Niebes JF, Reckmann U, Schnorbach HJ, Steffens R (2007) Spirotetramat, an innovative fully systemic insecticide for sucking insect pest control in agriculture: biological profile and field performance. In: Proceedings of the XVI international plant protection congress, vol 1: pp 60–67
    Wachendorff U, Nauen R, Schnorbach HJ, Rauch N, Elbert A (2002) The biological profile of spirodiclofen (Envidor®)—a new selective tetronic acid acaricide. Pflanzenschutz-Nachrichten Bayer 55:149–176
    Yu SJ (1996) Insect glutathione S-transferases. Zool Stud 35:9–19
  • 作者单位:Youhui Gong (1)
    Xueyan Shi (1)
    Nicolas Desneux (2)
    Xiwu Gao (1)

    1. Department of Entomology, China Agricultural University, Beijing, China
    2. French National Institute for Agricultural Research (INRA), UMR 1355-ISA, 400 Route des Chappes, 06903, Sophia-Antipolis, France
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-3017
文摘
Spirotetramat is a novel tetramic acid-based insecticide, belonging to keto-enol pesticide family, with a novel mode of action; it interferes with lipid biosynthesis. Its insecticide activity against various agricultural pest insects have been demonstrated (e.g. on Myzus persicae, Bemisia tabaci and Tetranychus urticae). However, information available is currently limited on the efficacy of spirotetramat on the cotton aphid, Aphis gossypii, a key cotton pest worldwide. We assessed the spirotetramat toxicity on A. gossypii and evaluated its effects on aphid fecundity when exposed to a sublethal concentration (LC10) and to increasing lethal concentrations (LC25, LC50, and LC75). A key mechanism involved in insecticide resistance in aphids relates to esterase activity. We estimated the CarE activity and a CarE gene expression in aphids in response to spirotetramat exposure, then we tested tolerance of offspring to spirotetramat when the parents were exposed to the highest concentration tested in our study (LC75). Results showed that spirotetramat showed increasing toxicity to A. gossypii with exposure duration to treated leaves; LC50 ranged from 23,675.68 to 12.27 mg/L for 1 to 5-days exposure. In addition, spirotetramat reduced aphid daily fecundity, in all concentration treatments, especially with up to 90 % reduction in case of exposure to LC75. Total CarE activity increased dramatically and CarE mRNA expression was also up regulated in aphids after exposure to LC75 spirotetramat. Finally, the tolerance to spirotetramat in offspring (when parents were exposed to the LC75) showed a 2.5-fold increase when compared to control aphids. Consequently, spiroteramat showed potential for pest management of cotton aphids owing to both lethal and sublethal activities, notably strong impact on aphid fecundity. However, we also demonstrated that increased tolerance of A. gossypii to spirotetramat may happen through increased CarE- activity and subsequent metabolic degradation of the insecticide in aphids’ body.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700