Construction of double- and triple-decker sandwich compounds from half-sandwich compounds: a theoretical assessment
详细信息    查看全文
  • 作者:Mei Zhang ; Xueying Zhang ; Lingpeng Meng ; Qingzhong Li…
  • 关键词:Dissociation energy ; Sandwich compounds ; Topological analysis of electron density
  • 刊名:Journal of Molecular Modeling
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:21
  • 期:8
  • 全文大小:575 KB
  • 参考文献:1.Kealy TJ, Pauson PL (1951) A new type of organo-iron compound. Nature 168:1039-040View Article
    2.Miller SA, Tebboth JA, Tremaine JF (1952) Dicyclopentadienyliron. J Chem Soc 632-35
    3.Fischer EO, Pfab W (1952) Cyclopentadien-metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z Naturforsch b7:377-79
    4.Wilkinson G, Rosenblum M, Whiting MC, Woodward RB (1952) The structure of iron bis-cyclopentadienyl. J Am Chem Soc 74:2125-126View Article
    5.Wilkinson G (1952) The preparation and some properties of ruthenocene and ruthenicinium salts. J Am Chem Soc 74:6146-417View Article
    6.Jutzi P, Burdford N (1998) Metallocenes. Wiley, New York
    7.Yamamoto A (2000) Organotransition-metal chemistry: past development and future outlook. J Organome Chem 600:159-67View Article
    8.Pauson PL (2001) Ferrocene-how it all began. J Organomet Chem 637-39:3-View Article
    9.Fischer EO, Jira R (2001) How metallocene chemistry and research began in Munich. J Organomet Chem 637-39:7-2View Article
    10.Rosenblum M (2001) The early ferrocene days-a personal recollection. J Organomet Chem 637-39:13-5View Article
    11.Whiting MC (2001) Recollections of the arrival of ferrocene. J Organomet Chem 637-39:16-7View Article
    12.Cotton FA (2001) Cyclopentadienyl-metal chemistry in the Wilkinson Group, Harvard, 1952-955. J Organomet Chem 637-39:18-6View Article
    13.Scheirs J, Kaminsky W (2000) Metallocene-based polyolefins, preparation, properties, and technology. Chichester
    14.Togni A, Hayashi T (1995) Ferrocenes. Weinheim, Verlach Chemie
    15.Arndtsen BA, Bergman RG (1995) Unusully mild and selective hydrocarbon C-H bond activation with positively charged lridium(III) complexes. Science 270:1970-973View Article
    16.Chen H, Schlecht S, Semple TC, Hartwig JF (2000) Thermal, catalytic, regiospecific functionalization of alkanes. Science 287:1995-997View Article
    17.Pamplin CB, Legzdins P (2003) Thermal activation of hydrocarbon C-H bonds by Cp*M(NO) complexes of molybdenum and tungsten. Acc Chem Res 36:223-33View Article
    18.Jones WD (2005) On the nature of carbon-hydrogen bond activation at rhodium and Related reactions. Inorg Chem 44:4475-484View Article
    19.Jaoune G, Top S, Vessières A, Alberto R (2000) New paradigms for synthetic pathways inspired by bioorganomentallic chemistry. J Organomet Chem 600:23-6View Article
    20.Rayón VM, Frenking G (2002) Structures, bond energies, heats of formation, and quantitative bonding analysis of main-group metallocenes [E(Cp)2] (E-?Be - Ba, Zn, Si - Pb) and [E(Cp)] (E-?Li - Cs, B -Tl). Chem Eur J 8:4693-707View Article
    21.Budzelaar PHM (2003) Trends in cyclopentadienyl-main-group-metal bonding. Organometallics 22:1562-576View Article
    22.He N, Xie HB, Ding YH (2007) Can donor–acceptor bonded dinuclear metallocenes exist? a computational study on the stability of CpM-MCp (M’-?B, Al, Ga, In, Tl; M-?Li, Na, K) and its isomers. Organometallics 26:6839-843View Article
    23.Beswick MA, Palmer JS, Wright DS (1998) p-Block metallocenes: the other side of the coin. Chem Soc Rev 27:225-32View Article
    24.Jutzi P, Burford N (1999) Structurally diverse pi-Cyclopentadienyl complexes of the main group elements. Chem Rev 99:969-90View Article
    25.Burkey DJ, Hanusa TP (1995) Hanusa, structural lessons from main-group metallocenes. Inorg Chem 17:41-7
    26.Thomas RC (2001) Computational organometallic chemisty. Dekker, New York
    27.Li XY, Huo SH, Zeng XL, Sun Z, Zheng SJ, Meng LP (2013) Metal-metal and metal-ligand bonds in (η5-C5H5)2M2 (M-?Be, Mg, Ca, Ni, Cu, Zn). Organometallics 32:1060-066View Article
    28.Harder S, Prosenc MH (1994) The simplest metallocene sandwich: the lithocene anion. Angew Chem Int Ed Engl 33:1744-746View Article
    29.Harder S, Prosenc MH, Rief U, Ursula R (1996) Ursula, syntheses and x-ray structures of anionic sodocene sandwiches. Organometallics 15:118-22View Article
    30.Bünder W, Weiss E (1975) Verfeinerung der kristallstruktur von dicyclopentadienyl-magnesium, (η-C5H5)2Mg. J Organomet Chem 92:1-
    31.Fernández I, Cerpa E, Merino G, Frenking G (2008) Structure and bonding of [E-Cp-E’]+ complexes (E and E’-?B-Tl; Cp-?cyclopentadienyl). Organometallics 27:1106-111
    32.Xie Y, Schaefer HF, King RB (2005) The dichotomy of dimetallocenes: coaxial versus perpendicular dimetal units in sandwich compounds. J Am Chem Soc 127(9):2818-819View Article
    33.Xie ZZ, Fang WH (2005) A combined DFT and CCSD(T) study on electronic structures and stability of the M2(η 5-CpX)2 (M-?Zn and Cd, CpX-?C5Me5 and C5H5) complexes. Chem Phys Lett 404(1-):212-16View Article
    34.Rayón VM, Frenking G (2003) Bis(benzene)chromium is a δ-bonded molecule and ferrocene is a π-bonded molecule. Organometallics 22:3304-308
    35.Merino G, Beltrán HI, Vela A (2006) Donor-acceptor heteroleptic open sandwiches. Inorg Chem 45:1091-095View Article
    36.Cerpa E, Tenorio FJ, Contreras M, Villanueva M
  • 作者单位:Mei Zhang (1) (2)
    Xueying Zhang (1)
    Lingpeng Meng (1) (2)
    Qingzhong Li (3)
    Xiaoyan Li (1) (2)

    1. College of Chemistry and Material Science, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang, 050024, China
    2. Key Laboratory of Inorganic Nano-materials of Hebei Province, Shijiazhuang, 050024, China
    3. The Laboratory of Theoretical and Computational Chemistry, Science and Engineering College of Chemistry and Biology, Yantai University, Yantai, 264005, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The viability and properties of double- (Cp2M) and triple-decker (Cp3M2) sandwiches formed from half-sandwiches (CpM, Cp-?C5H5; M-?Li, Na, K, Be, Mg, Ca, Fe, Co, Ni, Cu, and Zn) are discussed based on the geometry, energy, HOMO-LUMO gap, and topological properties. The calculated results show that the alkali metals and transitional metals (Fe, Co, Ni) with more unpaired electron are more inclined to form high-symmetry sandwich complexes than the alkaline earth metals. The Cp2M and Cp3M2 symmetries for M-?Cu and Zn are low. In Cp2M and Cp3M2, the electrostatic and π orbital interactions are dominant. For Cp3M2, the contributions of orbital interaction to the total M-C interaction and of σ-type interaction to the orbital interaction are larger than those in Cp2M. The nature of the M-C bond is well correlated to its bond length. The shorter the M-C bond, the more covalent it is.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700