Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis
详细信息    查看全文
  • 作者:Xujing Ma ; Jiuquan Zhang ; Youxue Zhang ; Heng Chen ; Rong Li…
  • 关键词:Amyotrophic lateral sclerosis ; Resting ; state fMRI ; Graph theory ; Hub ; Prefrontal cortex ; Cognitive impairment
  • 刊名:Neurological Sciences
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:36
  • 期:11
  • 页码:2097-2104
  • 全文大小:930 KB
  • 参考文献:1.Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955CrossRef PubMed
    2.Talbot K (2009) Motor neuron disease: the bare essentials. Pract Neurol 9:303–309CrossRef PubMed
    3.Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003CrossRef PubMed
    4.Abrahams S, Goldstein L, Simmons A, Brammer M, Williams S, Giampietro V et al (2004) Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain J Neurol 127:1507–1517CrossRef
    5.Stanton BR, Williams VC, Leigh PN, Williams SC, Blain CR, Jarosz JM et al (2007) Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol 254:1260–1267CrossRef PubMed
    6.Kew J, Goldstein L, Leigh P, Abrahams S, Cosgrave N, Passingham R et al (1993) The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis A neuropsychological and positron emission tomography study. Brain J Neurol 116:1399–1423CrossRef
    7.Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z et al (2013) Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 146:401–406.CrossRef PubMed
    8.Liu F, Hu M, Wang S, Guo W, Zhao J, Li J et al (2012) Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 39: 326–331CrossRef PubMed
    9.Liu F, Xie B, Wang Y, Guo W, Fouche JP, Long Z et al (2015) Characterization of post-traumatic stress disorder using resting-state fMRI with a multilevel parametric classification approach. Brain Topogr 28: 221–237CrossRef
    10.Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Munte TF (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217:147–153CrossRef PubMed
    11.Verstraete E, van den Heuvel MP, Veldink JH, Blanken N, Mandl RC, Hulshoff Pol HE et al (2010) Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 5:e13664PubMedCentral CrossRef PubMed
    12.Li M, Wang J, Liu F, Chen H, Lu F, Wu G et al (2015) Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study. Brain Connect 5: 259–265CrossRef PubMed
    13.Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72CrossRef PubMed
    14.He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H et al (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4:e5226PubMedCentral CrossRef PubMed
    15.Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci USA 110:1929–1934PubMedCentral CrossRef PubMed
    16.Tomasi D, Wang GJ, Volkow ND (2013) Energetic cost of brain functional connectivity. Proc Natl Acad Sci USA 110:13642–13647PubMedCentral CrossRef PubMed
    17.Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299
    18.Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRef PubMed
    19.Meyer BU, Röricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369CrossRef PubMed
    20.Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21CrossRef PubMed
    21.Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H et al (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66:265–267CrossRef PubMed
    22.Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRef PubMed
    23.Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13PubMedCentral PubMed
    24.Liu F, Guo W, Fouche JP, Wang Y, Wang W, Ding J et al (2015) Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct Funct 220: 101-115.
    25.Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A et al (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25–32PubMedCentral CrossRef PubMed
    26.Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851CrossRef PubMed
    27.Liu F, Zhu C, Wang Y, Guo W, Li M, Wang W et al (2014) Disrupted cortical hubs in functional brain networks in social anxiety disorder. Clin Neurophysiol. doi: 10.​1016/​j.​clinph.​2014.​11.​014
    28.Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873PubMedCentral CrossRef PubMed
    29.Dai Z, Yan C, Li K, Wang Z, Wang J, Cao M et al (2014) Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s Disease. Cereb Cortex. doi:10.​1093/​cercor/​bhu246
    30.Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRef PubMed
    31.Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinformatics 4:1PubMedCentral
    32.Bassett DS, Bullmore E (2006) Small-world brain networks. Neurosci 12:512–523
    33.Kew JJ, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS et al (1993) Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain J Neurol 116(Pt 3):655–680CrossRef
    34.Sgobio C, Trabalza A, Spalloni A, Zona C, Carunchio I, Longone P et al (2008) Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes Brain Behav 7:427–434CrossRef PubMed
    35.Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417CrossRef PubMed
    36.Amato N, Riva N, Cursi M, Martins-Silva A, Martinelli V, Comola M et al (2013) Different frontal involvement in ALS and PLS revealed by stroop event-related potentials and reaction times. Front Aging Neurosci 5:82PubMedCentral CrossRef PubMed
    37.Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369:2031–2041CrossRef PubMed
    38.Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012) Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33:1564–1578CrossRef PubMed
    39.Qi Z, Wu X, Wang Z, Zhang N, Dong H, Yao L et al (2010) Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage 50:48–55CrossRef PubMed
    40.Douaud G, Filippini N, Knight S, Talbot K, Turner MR (2011) Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain J Neurol 134:3470–3479CrossRef
    41.Turner MR, Osei-Lah AD, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM et al (2005) Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J Neurol Neurosurg Psychiatry 76:1279–1285PubMedCentral CrossRef PubMed
    42.Agosta F, Chio A, Cosottini M, De Stefano N, Falini A, Mascalchi M et al (2010) The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR 31:1769–1777CrossRef PubMed
    43.du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S et al (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain J Neurol 129:3315–3328CrossRef
    44.David AS, Gillham RA (1986) Neuropsychological study of motor neuron disease. Psychosomatics 27:441–445CrossRef PubMed
    45.Strong MJ, Grace G, Orange J, Leeper H, Menon R, Aere C (1999) A prospective study of cognitive impairment in ALS. Neurology 53:1665–1670
    46.Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455PubMedCentral CrossRef PubMed
    47.Frank B, Haas J, Heinze HJ, Stark E, Munte TF (1997) Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg 99:79–86CrossRef PubMed
    48.Tedeschi G, Trojsi F, Tessitore A, Corbo D, Sagnelli A, Paccone A et al (2012) Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol Aging 33:886–898CrossRef PubMed
    49.Abrahams S, Goldstein LH, Kew JJ, Brooks DJ, Lloyd CM, Frith CD et al (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain J Neurol 119(Pt 6):2105–2120CrossRef
    50.He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341–350PubMed
    51.Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331CrossRef PubMed
  • 作者单位:Xujing Ma (1) (2)
    Jiuquan Zhang (3)
    Youxue Zhang (1)
    Heng Chen (1)
    Rong Li (1)
    Jian Wang (3)
    Huafu Chen (1)

    1. Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People’s Republic of China
    2. Department of Medical Technology, Cangzhou Medical College, CangZhou, 061001, People’s Republic of China
    3. Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, People’s Republic of China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Neurology
    Neuroradiology
    Neurosurgery
    Psychiatry
  • 出版者:Springer Milan
  • ISSN:1590-3478
文摘
Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700