Microstructures and Tensile Mechanical Properties of Titanium Rods Made by Powder Compact Extrusion of a Titanium Hydride Powder
详细信息    查看全文
  • 作者:Yifeng Zheng ; Xun Yao ; Jiamiao Liang…
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:47
  • 期:4
  • 页码:1842-1853
  • 全文大小:3,793 KB
  • 参考文献:1.[1] R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103-114.CrossRef
    2.[2] R.H. Hu and J.K. Lim: Mater. Des., 2010, vol. 31, pp. 2670-2675.CrossRef
    3.[3] V.M. Anokhin, O.M. Ivasishin, and A.N. Petrunko: Mater. Sci. Eng. A, 1998, vol. 243, pp. 269-272.CrossRef
    4.[4] O.M. Ivasishin, V.M. Anokhin, and D.G. Savvakin: Key Eng. Mater., 2000, vol. 188, pp. 55-62.CrossRef
    5.[5] I.M. Robertson and G.B. Schaffer: Powder Metallurgy., 2010, vol. 53, pp. 12-19.CrossRef
    6.[6] Z. Yong, M.S. Zheng, H. Hashimoto, and C. Lin: J. Alloys Compd., 2009, vol. 468, pp. 217-221.CrossRef
    7.[7] N. Peillon, J.B. Fruhauf, S. Gourdet, J. Feraille, S. Saunier, and C. Desrayaud: J. Alloys Compd., 2015, vol. 619, pp. 157-164.CrossRef
    8.[8] Y.H. Li, R.B. Chen, G.X. Qi, Z.T. Wang, and Z.Y. Deng: J. Alloys Compd., 2009, vol. 485, pp. 215-218.CrossRef
    9.[9] B. Bertheville, M. Neudenberger, and J.E. Bidaux: Mater. Sci. Eng. A, 2004, vol.384, pp. 143-150.CrossRef
    10.[10] J.L. Bobet, C. Even, and J.M. Quenisset: J. Alloys Compd., 2003, vol. 348, pp. 247-251.CrossRef
    11.[11] C.I. Pascu, O. Gingu, P. Rotaru, I. Vida-Simiti, A. Harabor, and N. Lupu: J Therm Anal Calorim., 2013, vol. 113, pp. 849-857.CrossRef
    12.[12] N.R. Kim, I.Y. Ko, S.W. Cho, W. Kim and I.J. Shon: Res Chem Intermed., 2011, vol. 37, pp. 11-17.CrossRef
    13.[13] S.D. Luo, Y.F. Yang, G.B. Schaffer, and M. Qian: Scripta Materialia., 2013, vol. 69, pp. 69-72.CrossRef
    14.[14] G. Chen, P. Cao, and N. Edmonds: Mater. Sci. Eng. A, 2013, vol. 582, pp. 117-125.CrossRef
    15.[15] O.M. Ivasishin and D.G. Savvakin: Key Eng. Mater., 2010, vol. 436, pp. 113-121.CrossRef
    16.[16] V. Bhosle, E.G. Baruraj, M. Miranova, and K. Salama: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2793-2799.CrossRef
    17.[17] Y.F. Yang and D.K. Mu: Powder Technol., 2013, vol. 249, pp. 208-211.CrossRef
    18.[18] F. Prat, M. Grange, J. Besson, and E. Andrieu: Metall. Mater. Trans. A. 1998, vol. 29, pp. 1643-1651.CrossRef
    19.[19] A.R. Traiano: Trans. ASM., 1960, vol. 52, pp. 54-80.
    20.[20] K.S. Chan and Y.W. Kim: Acta. Metall. Mater., 1995, vol. 43, pp. 439-451.CrossRef
  • 作者单位:Yifeng Zheng (1)
    Xun Yao (1)
    Jiamiao Liang (1)
    Deliang Zhang (1)

    1. State Key Laboratory for Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Structural Materials
    Physical Chemistry
    Ceramics,Glass,Composites,Natural Materials
  • 出版者:Springer Boston
  • ISSN:1543-1940
文摘
Nearly fully dense titanium with good mechanical properties was fabricated rapidly by induction heating, holding, and hot extrusion of the TiH2 powder compacts. The dehydrogenation and consolidation processes took less than 15 minutes in total. The microstructures, contents of interstitial elements (H, O), tensile mechanical properties, and fracture behaviors of titanium samples made with different holding and extrusion temperatures [1273 K, 1373 K, and 1473 K (1000 °C, 1100 °C, and 1200 °C)] were investigated. The results showed that the hydrogen content in the extruded rods was around 0.09 wt pct when the holding and extrusion temperature was 1373 K or 1473 K (1100 °C or 1200 °C), with almost all of the TiH2 phase being transformed into Ti phase during the heating, holding, and extrusion process steps. The extruded Ti samples had a lamellar structure consisting of fine α lamellae with random orientations in different lamellar colonies and the relative density of all the extruded samples exceeded 99.5 pct. The residual TiH2 phase can reduce the ductility of extruded rods. The sample extruded at 1373 K (1100 °C) has the best elongation to fracture of 21.0 pct, and its average yield strength and ultimate tensile strength reached 536.8 and 691.8 MPa, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700