Default network connectivity decodes brain states with simulated microgravity
详细信息    查看全文
  • 作者:Ling-Li Zeng ; Yang Liao ; Zongtan Zhou ; Hui Shen ; Yadong Liu
  • 关键词:Microgravity ; Functional magnetic resonance imaging ; Connectome ; Multivariate pattern analysis ; Default network
  • 刊名:Cognitive Neurodynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:10
  • 期:2
  • 页码:113-120
  • 全文大小:1,175 KB
  • 参考文献:Aggleton JP, Poirier GL, Aggleton HS, Vann SD, Pearce JM (2009) Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: implications for the neural basis of scene learning. Behav Neurosci 123:504–519CrossRef PubMed
    Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628CrossRef PubMed
    Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829CrossRef PubMed
    Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14:1338–1344CrossRef PubMed PubMedCentral
    Andersen RA (2011) Inferior parietal lobule function in spatial perception and visuomotor integration. Compr Physiol. doi:10.​1002/​cphy.​cp010512
    Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321CrossRef PubMed
    Baisch F, Beck L, Karemaker J, Arbeille P, Gaffney F (1992) Head-down tilt bedrest HDT’88-an international collaborative effort in integrated systems physiology. Acta Physiol Scand 144:1–12CrossRef
    Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629CrossRef PubMed
    Borra E, Gerbella M, Rozzi S, Tonelli S, Luppino G (2012) Projections to the superior colliculus from inferior parietal, ventral premotor, and ventrolateral prefrontal areas involved in controlling goal-directed hand actions in the macaque. Cereb Cortex 24:1054–1065CrossRef PubMed
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124:1–38CrossRef PubMed
    Burgess N, Becker S, King JA, O’Keefe J (2001) Memory for events and their spatial context: models and experiments. Philos Trans R Soc Lond B Biol Sci 356:1493–1503CrossRef PubMed PubMedCentral
    Bushara KO, Weeks RA, Ishii K, Catalan M-J, Tian B, Rauschecker JP, Hallett M (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2:759–766CrossRef PubMed
    Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114:340–375CrossRef PubMed PubMedCentral
    de Schotten MT, Urbanski M, Duffau H, Volle E, Lévy R, Dubois B, Bartolomeo P (2005) Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309:2226–2228CrossRef
    Desmurget M, Sirigu A (2012) Conscious motor intention emerges in the inferior parietal lobule. Curr Opin Neurobiol 22:1004–1011CrossRef PubMed
    Dimitriadis SI, Laskaris NA, Micheloyannis S (2015) Transition dynamics of EEG-based network microstates during mental arithmetic and resting wakefulness reflects task-related modulations and developmental changes. Cogn Neurodyn 9:371–387CrossRef PubMed
    Dosenbach NUF et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361CrossRef PubMed PubMedCentral
    Eddy DR, Schiflett SG, Schlegel RE, Shehab RL (1998) Cognitive performance aboard the life and microgravity spacelab. Acta Astronaut 43:193–210CrossRef PubMed
    Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trend Cogn Sci 12:388–396CrossRef
    Epstein RA, Parker WE, Feiler AM (2007) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27:6141–6149CrossRef PubMed
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874CrossRef
    Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457CrossRef PubMed
    Grigoriev AI, Egorov AD (1992) General mechanisms of the effect of weightlessness on the human body. Adv Space Biol Med 2:1–42CrossRef PubMed
    Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74CrossRef PubMed PubMedCentral
    Henderson JM, Larson CL, Zhu DC (2007) Cortical activation to indoor versus outdoor scenes: an fMRI study. Exp Brain Res 179:75–84CrossRef PubMed
    Henderson JM, Larson CL, Zhu DC (2008) Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study. Brain Cogn 66:40–49CrossRef PubMed
    Hoffstaedter F et al (2014) The role of anterior midcingulate cortex in cognitive motor control. Hum Brain Mapp 35:2741–2753CrossRef PubMed
    Kawai Y, Doi M, Setogawa A, Shimoyama R, Ueda K, Asai Y (2003) Effects of microgravity on cerebral hemodynamics. Yonago Acta Med 46:1–8
    Kosaki Y, Lin TCE, Horne MR, Pearce JM, Gilroy KE (2014) The role of the hippocampus in passive and active spatial learning. Hippocampus 24:1633–1652CrossRef PubMed PubMedCentral
    Leung H, Gore JC, Goldman-Rakic PS (2002) Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. J Cogn Neurosci 14:659–671CrossRef PubMed
    Liao Y, Zhang J, Huang Z, Xi Y, Zhang Q, Zhu T, Liu X (2012) Altered baseline brain activity with 72 h of simulated microgravity—initial evidence from resting-state fMRI. PLoS One 7:e52558CrossRef PubMed PubMedCentral
    Liao Y, Miao D, Huan Y, Yin H, Xi Y, Liu X (2013) Altered regional homogeneity with short-term simulated microgravity and its relationship with changed performance in mental transformation. PLoS One 8:e64931CrossRef PubMed PubMedCentral
    Liao Y, Lei M, Huang H, Wang C, Duan J, Li H, Liu X (2015) The time course of altered brain activity during 7-day simulated microgravity. Front Behav Neurosci 9:124CrossRef PubMed PubMedCentral
    Lockhart SN, Luck SJ, Geng J, Beckett L, Disbrow EA, Carmichael O, DeCarli C (2015) White matter hyperintensities among older adults are associated with futile increase in frontal activation and functional connectivity during spatial search. PLoS One 10:e0122445CrossRef PubMed PubMedCentral
    Maguire E (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42:225–238CrossRef PubMed
    Mallis MM, De Roshia C (2005) Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 76:B94–B107PubMed
    Manzey D, Lorenz B, Heuer H, Sangals J (2000) Impairments of manual tracking performance during spaceflight: more converging evidence from a 20-day space mission. Ergonomics 43:589–609CrossRef PubMed
    Messerotti Benvenuti S, Bianchin M, Angrilli A (2011) Effects of simulated microgravity on brain plasticity: a startle reflex habituation study. Physiol Behav 104:503–506CrossRef PubMed
    Moore ST, Mac Dougall HG, Paloski WH (2010) Effects of head-down bed rest and artificial gravity on spatial orientation. Exp Brain Res 204:617–622CrossRef PubMed
    Owen AM, Milner B, Petrides M, Evans AC (1996) A specific role for the right parahippocampal gyrus in the retrieval of object-location: a positron emission tomography study. J Cogn Neurosci 8:588–602CrossRef PubMed
    Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194CrossRef PubMed
    Pearce JM, Good MA, Jones PM, McGregor A (2004) Transfer of spatial behavior between different environments: implications for theories of spatial learning and for the role of the hippocampus in spatial learning. J Exp Psychol Anim Behav Process 30:135–147CrossRef PubMed
    Renier LA, Anurova I, De Volder AG, Carlson S, VanMeter J, Rauschecker JP (2010) Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron 68:138–148CrossRef PubMed PubMedCentral
    Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326CrossRef PubMed
    Seth A (2008) Causal networks in simulated neural systems. Cogn Neurodyn 2:49–64CrossRef PubMed PubMedCentral
    Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole
    ain connectivity patterns. Cereb Cortex 22:158–165CrossRef PubMed PubMedCentral
    Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. NeuroImage 31:1826–1840CrossRef PubMed
    Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510CrossRef PubMed
    Vaitl D, Gruppe H, Stark R, Pössel P (1996) Simulated micro-gravity and cortical inhibition: a study of the hemodynamic
    ain interaction. Biol Psychol 42:87–103CrossRef PubMed
    Vann SD, Aggleton JP (2002) Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci 116:85CrossRef PubMed
    Vann SD, Aggleton JP (2004) Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behav Brain Res 155:97–108CrossRef PubMed
    Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792–802CrossRef PubMed
    Vapnik V (1995) The natures of statistical learning theory. Springer, New YorkCrossRef
    Wilmer A, de Lussanet MHE, Lappe M (2010) A method for the estimation of functional brain connectivity from time-series data. Cogn Neurodyn 4:133–149CrossRef PubMed PubMedCentral
    Zeng L-L et al (2012) Identifying major depression using whole
    ain functional connectivity: a multivariate pattern analysis. Brain 135:1498–1507CrossRef PubMed
    Zeng L-L et al (2014) Neurobiological basis of head motion in brain imaging. Proc Natl Acad Sci USA 111:6058–6062CrossRef PubMed PubMedCentral
    Zhao X, Wang Y, Zhou R, Wang L, Tan C (2011) The influence on individual working memory during 15 days—6° head-down bed rest. Acta Astronaut 69:969–974CrossRef
    Zhou Y et al (2014) Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity. Front Behav Neurosci 8:200PubMed PubMedCentral
  • 作者单位:Ling-Li Zeng (1)
    Yang Liao (2)
    Zongtan Zhou (1)
    Hui Shen (1)
    Yadong Liu (1)
    Xufeng Liu (2)
    Dewen Hu (1)

    1. College of Mechatronics and Automation, National University of Defense Technology, Changsha, 410073, Hunan, People’s Republic of China
    2. Department of Psychology, Fourth Military Medical University, Xi’an, 710032, Shaanxi, People’s Republic of China
  • 刊物主题:Biomedicine general; Neurosciences; Computer Science, general; Artificial Intelligence (incl. Robotics); Biochemistry, general; Cognitive Psychology;
  • 出版者:Springer Netherlands
  • ISSN:1871-4099
文摘
With great progress of space navigation technology, it becomes possible to travel beyond Earth’s gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day −6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700