Isolation and characterization of pyrene and benzo[a]pyrene-degrading Klebsiella pneumonia PL1 and its potential use in bioremediation
详细信息    查看全文
  • 作者:Lifeng Ping (1) (2)
    Chunrong Zhang (1) (2)
    Changpeng Zhang (1) (2)
    Yahong Zhu (1) (2)
    Hongmei He (1) (2)
    Min Wu (1) (2)
    Tao Tang (1) (2)
    Zhen Li (1) (2)
    Hua Zhao (1)
  • 关键词:Pyrene ; Benzo[a]pyrene ; Klebsiella pneumoniae ; Characterization ; Biodegradation
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:98
  • 期:8
  • 页码:3819-3828
  • 全文大小:431 KB
  • 参考文献:1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-02 CrossRef
    2. Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain / Ochrobactrum sp. VA1. Mar Pollut Bull 62:388-94 CrossRef
    3. Baboshin MA, Golovleva LA (2012) Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology 81:639-50 CrossRef
    4. Borràs E, Caminal G, Sarrà M, Novotny C (2010) Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by / Trametes versicolor and / Irpex lacteus from contaminated soil. Soil Biol Biochem 42:2087-093 CrossRef
    5. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351-68 CrossRef
    6. César GD, Ma TPN, Fernando EG, Flor RO, Josefina BC (2013) PAH removal of high molecular weight by characterized bacterial strains from different organic sources. Int Biodeterior Biodegrad 85:311-22 CrossRef
    7. Chen BL, Yuan MX, Qian LB (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments 12:1350-359 CrossRef
    8. Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent / Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172- CrossRef
    9. Dandie CE, Thomas SM, Bentham RH, McClure NC (2004) Physiological characterization of / Mycobacterium sp strain 1B isolated from a bacterial culture able to degrade high-molecular weight polycyclic aromatic hydrocarbons. J Appl Microbiol 97:246-55 CrossRef
    10. El-Mansi EMT, Bryce CFA, Demain AL, Allman AR (2007) Fermentation microbiology and biotechnology, 2nd edn. CRC, Boca Raton
    11. Essumang DK, Kowalski K, Sogaard EG (2011) Levels, distribution and source characterization of polycyclic aromatic hydrocarbons (PAHs) in topsoils and roadside soils in Esbjerg, Denmark. Bull Environ Contam Toxicol 86:438-43 CrossRef
    12. Fetzer JC (2007) The chemistry and analysis of the large polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 27:143-62 CrossRef
    13. Gibson DT, Mahadevan V, Jerina RM, Yogi H, Yeh HJ (1975) Oxidation of the carcinogens benzo[ / a] pyrene and dibenz[ / a, / h] anthracene to dihydrodiols by a bacterium. Science 189:295-97 CrossRef
    14. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1-5 CrossRef
    15. Isaka K, Date Y, Kimura Y, Sumino T, Tsuneda S (2008) Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures. FEMS Microbiol Lett 28:232-8
    16. Janbandhu A, Fulekar MH (2011) Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J Hazard Mater 187:333-40 CrossRef
    17. John GH, Krieg NR (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore
    18. Kastner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soil affected by the organic matrix of compost. Appl Microbiol Biot 44:668-75 CrossRef
    19. Kastner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microb 64:359-62
    20. Li J, Liu GM, Yin LL, Xue JL, Qi H, Li YF (2013) Distribution characteristics of polycyclic aromatic hydrocarbons in sediments and biota from the Zha Long Wetland, China. Environ Monit Assess 185:3163-171 CrossRef
    21. Liu ZQ, Li Y, Xu YY, Ping LF, Zheng YG (2007) Cloning, sequencing, and expression of a novel epoxide hydrolase gene from / Rhodococcus opacus in / Escherichia coli and characterization of enzyme. Appl Microbiol Biotechnol 74:99-06 CrossRef
    22. Liu ZQ, Zhang JF, Zheng YG, Shen YC (2008) Improvement of astaxanthin production by a newly isolated / Phaffia rhodozyma mutant with low-energy ion beam implantation. J Appl Microbiol 104:861-2 CrossRef
    23. Liu ZQ, Jia LZ, Zheng YG (2010) Biotransformation of dl -lactate to pyruvate by a newly isolated / Serratia marcescens ZJB-07166. Process Biochem 45:1632-637 CrossRef
    24. Lors C, Damidot D, Ponge JF, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11-7 CrossRef
    25. Lu XY, Zhang T, Han H, Fang P (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357-371 CrossRef
    26. Machín-Ramírez C, Morales D, Martínez-Morales F, Okoh AI, Trejo-Hernández MR (2010) Benzo[ / a]pyrene removal by axenic- and co-cultures of some bacterial and fungal strains. Int Biodeterior Biodegrad 64:538-44 CrossRef
    27. Mahanty B, Pakshirajan K, DasuBatch VV (2010) Biodegradation of PAHs in mixture by / Mycobacterium frederiksbergense: analysis of main and interaction effects. Clean Technol Environ 12:441-47 CrossRef
    28. Mao J, Luo YM, Teng Y, Li ZG (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegrad 70:141-47 CrossRef
    29. Mihelcic JR, Luthy RG (1993) Bioavailability of sorbed- and separate-phase chemicals. Biodegradation 4:141-53 CrossRef
    30. Peng H, Yin H, Deng J, Ye JS, Chen SN, He BY, Zhang N (2012) Biodegradation of benzo[ / a]pyrene by / Arthrobacter oxydans B4. Pedosphere 22(4):554-61 CrossRef
    31. Ping LF, Luo YM, Zhang CB, Li QB, Wu LH (2007) Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environ Pollut 147:358-65 CrossRef
    32. Ping LF, Zhang CR, Zhu YH, Wu M, Hu XQ, Li Z, Zhao H (2011) Biodegrading of pyrene by a newly isolated / Pseudomonas putida PL2. Biotechnol Bioprocess Eng 16:1000-008 CrossRef
    33. Song XH, Xu Y, Li GM, Zhang Y, Huang TW, Hu Z (2011) Isolation, characterization of / Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 62:2122-128 CrossRef
    34. Su D, Li PJ, Ju JL (2006) Degradation of pyrene and benzo[ / a]pyrene in soil by six strains of fungi and its kinetics. China Environ Sci 26:188-91 (in Chinese)
    35. Su D, Li PJ, Wang X, Xu HX (2007) Degradation and kinetics of pyrene and benzo[ / a]pyrene by three bacteria in contaminated soil. Environ Sci 28:913-17 (in Chinese)
    36. Tao XQ, Lu GN, Dang Z, Chen Y, Xiao YY (2007) Aphenanthrene-degrading strain / Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem 42:401-08 CrossRef
    37. Thavamani P, Megharaj M, Naidu R (2012) Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation 23:823-35 CrossRef
    38. Thion C, Cébron A, Beguiristain T, Leyval C (2013) Inoculation of PAH-degrading strains of / Fusarium solani and / Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation 24:569-81 CrossRef
    39. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-0 CrossRef
    40. Wang SX, Li XJ, Liu W, Li PJ, Kong LX, Ren WJ, Wu HY, Ying T (2012) Degradation of pyrene by immobilized microorganisms in saline–alkaline soil. J Environ Sci 24(9):1662-669 CrossRef
    41. Wongwongsee W, Chareanpat P, Pinyakong O (2013) Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Mar Pollut Bull 74:95-04 CrossRef
    42. Woo SH, Lee MW, Park JM (2004) Biodegradation of phenanthrene in soil–slurry systems with different mass transfer regime and soil content. J Biotechnol 110:235-50 CrossRef
    43. Wu Y, He T, Zhong M, Zhang Y, Li E, Huang T, Hu Z (2009) Isolation of marine benzo[ / a]pyrene-degrading / Ochrobactrum sp. BAP5 and proteins characterization. J Environ Sci 21:1446-451 CrossRef
    44. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 20:673-3
    45. Yessicaa GP, Alejandro A, Ronalda FC, Joséa AJ, Esperanza MR, Samuel CSJ, Remediosc MLM, Orrillo EO (2013) Tolerance, growth and degradation of phenanthrene and benzo[ / a]pyrene by / Rhizobium tropici CIAT 899 in liquid culture medium. Appl Soil Ecol 63:105-11 CrossRef
    46. Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41:1463-468 CrossRef
    47. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River Basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489-15 CrossRef
    48. Zeng J, Lin XG, Zhang J, Li XG (2010) Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading / Mycobacterium sp. and the degradation in soil. J Hazard Mater 183:718-23 CrossRef
    49. Zhang J, Lin XG, Liu WW, Wang YM, Zeng J, Chen H (2012) Effect of organic wastes on the plant–microbe remediation for removal of aged PAHs in soils. J Environ Sci 24(8):1476-482 CrossRef
    50. Zhong Y, Zou SH, Lin L, Luan TG, Qiu RL, Tam NFY (2010) Effects of pyrene and fluoranthene on the degradation characteristics of phenanthrene in the cometabolism process by / Sphingomonas sp. strain PheB4 isolated from mangrove sediments. Mar Pollut Bull 60:2043-049 CrossRef
  • 作者单位:Lifeng Ping (1) (2)
    Chunrong Zhang (1) (2)
    Changpeng Zhang (1) (2)
    Yahong Zhu (1) (2)
    Hongmei He (1) (2)
    Min Wu (1) (2)
    Tao Tang (1) (2)
    Zhen Li (1) (2)
    Hua Zhao (1)

    1. Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
    2. State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, MOA Key Lab for Pesticide Residue Detection, Hangzhou, China
  • ISSN:1432-0614
文摘
Polycyclic aromatic hydrocarbons (PAHs), which are hard to degrade, are the main pollutants in the environment. Degradation of PAHs in the environment is becoming more necessary and urgent. In the current study, strain PL1 with degradation capability of pyrene (PYR) and benzo[a]pyrene (BaP) was isolated from soil and identified as Klebsiella pneumoniae by morphological and physiological characteristics as well as 16S rDNA sequence. With the presence of 20?mg?L? PYR and 10?mg?L? BaP in solution, the strain PL1 could degrade 63.4?% of PYR and 55.8?% of BaP in 10 days, respectively. The order of biodegradation of strain PL1 was pH?7.0-gt;?pH?8.0-gt;?pH?10.0-gt;?pH?6.0-gt;?pH?5.0. Strain PL1 degradation ability varied in different soil. The half-life of PYR in soil was respectively 16.9, 24.9, and 88.9 days in paddy soil, red soil, and fluvo-aquic soil by PL1 degradation; however, the half-lives of BaP were respectively 9.5, 9.5, and 34.0 days in paddy soil, red soil, and fluvo-aquic soil by PL1 degradation. The results demonstrate that the degradation capability on PYR and BaP by PL1 in paddy soil was relatively good, and K. pneumoniae PL1 was the new degradation bacterium of PYR and BaP. K. pneumoniae PL1 has potential application in PAH bioremediation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700