Phytoplankton diversity in the East China Sea and Yellow Sea measured by PCR-DGGE and its relationships with environmental factors
详细信息    查看全文
  • 作者:Jing Sun (1)
    Zhigang Yu (2)
    Yahui Gao (3)
    Qianqian Zhou (3)
    Yu Zhen (4)
    Hongtao Chen (2)
    Liyuan Zhao (1)
    Qingzhen Yao (2)
    Tiezhu Mi (4)
  • 关键词:canonical correspondence analysis (CCA) ; denaturing gradient gel electrophoresis (DGGE) ; phytoplankton ; East China Sea ; Yellow Sea
  • 刊名:Chinese Journal of Oceanology and Limnology
  • 出版年:2010
  • 出版时间:March 2010
  • 年:2010
  • 卷:28
  • 期:2
  • 页码:315-322
  • 全文大小:661KB
  • 参考文献:1. Al-Qutob M. 2001. Nutrient distributions and dynamics in the Gulf of Eilat (Aqaba), Red Sea. PhD thesis, Bar-Ilan University, Ramat-Gan, Israel.
    2. Ault T, Velzeboer R, Zammit R. 2000. Influence of nutrient availability on phytoplankton growth and community structure in the Port Adelaide River, Australia: bioassay assessment of potential nutrient limitation. / Hydrobiologia, 429: 89-03. CrossRef
    3. Beaugrand G. 2005. Monitoring pelagic ecosystems using plankton indicators. / ICES J. Mar. Sci., 62: 333-38. CrossRef
    4. Blaiotta G, Pennacchia C, Ercolini D et al. 2003. Combining denaturing gradient gel electrophoresis of 16S rDNA V3 region and 16S-3S rDNA spacer region polymorphism analyses for the identification of staphylococci from Italian fermented sausages. / Syst. Appl. Microbiol., 26: 423-33. CrossRef
    5. Brogueira M J, Oliveira M R, Cabecadas G. 2007. Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal. / Mar. Environ. Res., 64(5): 616-28. CrossRef
    6. Conley D J, Malone T C. 1992. Annual cycle of dissolved silicate in Chesapeake Bay: Implications for the production and fate of phytoplankton biomass. / Mar. Ecol. Prog. Ser., 81: 121-28. CrossRef
    7. Diez B, Pedros-Alio C, Marsh T L et al. 2001. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. / Appl. Environ. Microbiol., 67(7): 2 942- 951.
    8. Dugdale R C, Wilkerson F P, Minas H J. 1995. The role of a silicate pumping driving new production. / Deep-Sea Res I, 42(5): 697-19. CrossRef
    9. Fischer S G, Lerman L S. 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. / Cell, 16(1): 191-00. CrossRef
    10. Furuya K, Hayashi M, Yabushita Y et al. 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. / Deep-Sea Res II, 50: 367-87. CrossRef
    11. Gast R J, Dennett M R, Caron D A. 2004. Characterization of protistan assemblages in the Ross Sea, Antarctica by denaturing gradient gel electrophoresis. / Appl. Environ. Microbiol., 70: 2 028- 037. CrossRef
    12. GB 17378.4-2007. The specification for marine monitoring-Part 4: Seawater analysis.
    13. Hassena M B, Hamza A, Drira Z et al. 2009. Phytoplankton-pigment signatures and their relationship to spring-summer stratification in the Gulf of Gabes. / Estuar. Coast. Shelf Sci., 83(3): 296-06. CrossRef
    14. Hodgkiss I J, Lu S H. 2004. The effects of nutrients and their ratios on phytoplankton abundance in Junk Bay, Hong Kong. / Hydrobiology, 512: 215-29. CrossRef
    15. Labry C, Herbland A, Delmas D. 2002. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. / J. Plan. Res., 24: 97-17. CrossRef
    16. Lindstrm E S. 2000. Bacterioplankton community composition in five lakes differing in trophic status and humic content. / Microb. Ecol., 40: 104-13.
    17. Magurran A E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, NJ. p. 179.
    18. Jiao N Z, Yang Y H, Hong N et al. 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. / Con. Shelf Res., 25: 1 265- 279.
    19. Meroth C B, Walter J, Hertel C et al. 2003. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. / Appl. Environ. Microbiol., 69: 475-82. CrossRef
    20. Paul J T, Ramaiah N, Sardessai S. 2008. Nutrient regimes and their effect on distribution of phytoplankton in the Bay of Bengal. / Mar. Environ. Res., 66(3): 337-44. CrossRef
    21. Piehler M F, Twomey L J, Hall N S et al. 2004. Impacts of inorganic nutrient enrichment on phytoplankton community structure and function in Pamlico Sound, NC,USA. / Estuar. Coast. Shelf Sci., 61: 197-09. CrossRef
    22. Sapp M, Wichels A, Wiltshire K H et al. 2007. Bacterial community dynamics during winter-spring transition in the North Sea. / FEMS Microbiol. Ecol., 59: 622-37. CrossRef
    23. Shen Z L. 1993. The effect of physico-chemical environment on the primary production in the Yangtze River estuary. / Trans. Oceanol. Limnol., 1: 47-1. (in Chinese)
    24. Shen G Y, Shi B Z. 1996. Marine Ecology. Xiamen University Press, Xiamen, China. p. 26. (in Chinese)
    25. Sinha R P, Dautz M, Hader D P. 2001. A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae. / Acta Protozool., 40: 187-95.
    26. Ter Braak C J F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. / Ecology, 67: 1 167- 179. CrossRef
    27. Wang J, Xie P, Takamura N et al. 2004. The picophytoplankton in three Chinese lakes of different trophic status and its relationship to fish populations. / J. Freshw. Ecol., 19: 285-93.
    28. Yan Q Y, Yu Y H, Feng W S et al. 2007. Genetic diversity of plankton community as depicted by PCR-DGGE fingerprinting and its relation to morphological composition and environmental factors in Lake Donghu. / Mirob. Ecol., 54: 290-97. CrossRef
    29. Yu Y H, Yan Q Y, Feng W S. 2008. Spatiotemporal heterogeneity of plankton communities in Lake Donghu, China, as revealed by PCR-denaturing gradient gel electrophoresis and its relation to biotic and abiotic factors. FEMS / Microbiol. Ecol., 63: 328-37. CrossRef
    30. Yuan Q, Wang Y L, Shen X Q. 2005. Influence of nitrogen and phosphate on phytoplankton in the middle and northern part of East China Sea. / Marine Environmental Science, 24(4): 5-.
    31. Zeidner G, Beja O. 2004. The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblage. / Environ. Microbiol., 6(5): 528-34. CrossRef
    32. Zhou M J, Yan T, Zou J Z. 2003. Preliminary analysis of the characteristics of red tide areas in Changjiang River estuary and its adjacent sea. / Chin. J. Appl. Ecol., 14(7):1 031- 038.
  • 作者单位:Jing Sun (1)
    Zhigang Yu (2)
    Yahui Gao (3)
    Qianqian Zhou (3)
    Yu Zhen (4)
    Hongtao Chen (2)
    Liyuan Zhao (1)
    Qingzhen Yao (2)
    Tiezhu Mi (4)

    1. College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
    2. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
    3. School of Life Sciences, Xiamen University, Xiamen, 361021, China
    4. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
  • ISSN:1993-5005
文摘
Relationships between phytoplankton community composition and environmental variables in the East China Sea (ECS) and Yellow Sea (YS) were investigated using geochemical and molecular microbiology methods. The diversity of phytoplankton was characterized using cultivation-independent PCR-based denaturing gradient gel electrophoresis (DGGE). Groups resulting from unweighted pair-group method with arithmetic averages clustering of the DGGE profiles showed good consistency with the eco-environmental characteristics of the sea area they belonged to. Additionally, the clustering results based on DGGE fingerprinting and those based on morphological compositions were practically identical. The relationship of phytoplankton diversity to environmental factors was statistically analyzed. Temperature, dissolved inorganic nitrogen (DIN), and silicate-Si were found significantly related to the phytoplankton community composition. Canonical correspondence analysis (CCA) was performed to reveal the relationship between community composition and these three environmental factors. Generally, values of the ECS are clearly separated from those of the YS in the CCA biplot, due to mainly the effect of temperature and DIN.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700