Inhibition of CTRP9, a novel and cardiac-abundantly expressed cell survival molecule, by TNFα-initiated oxidative signaling contributes to exacerbated cardiac injury in diabetic mice
详细信息    查看全文
  • 作者:Hui Su (1) (2)
    Yuexing Yuan (1)
    Xiao-Ming Wang (2)
    Wayne Bond Lau (1)
    Yajing Wang (1)
    Xiaoliang Wang (1)
    Erhe Gao (3)
    Walter J. Koch (3)
    Xin-Liang Ma (1) (4)
  • 关键词:Oxidative stress ; Diabetes ; Cytokines ; Myocardial ischemia
  • 刊名:Basic Research in Cardiology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:108
  • 期:1
  • 全文大小:587KB
  • 参考文献:1. Borchi E, Parri M, Papucci L, Becatti M, Nassi N, Nassi P, Nediani C (2009) Role of NADPH oxidase in H9c2 cardiac muscle cells exposed to simulated ischaemia-reperfusion. J Cell Mol Med 13:2724-735. doi:10.1111/j.1582-4934.2008.00485.x CrossRef
    2. Canton M, Skyschally A, Menabò R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Euro Heart J 27:875-81. doi:10.1093/eurheartj/ehi751 CrossRef
    3. Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, Ma XL (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497-502. doi:10.1161/01.CIR.0000012529.00367.0F CrossRef
    4. He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 100:15712-5717. doi:10.1073/pnas.2536828100 CrossRef
    5. Iaconetti C, Polimeni A, Sorrentino S, Sabatino J, Pironti G, Esposito G, Curcio A, Indolfi C (2012) Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107:296. doi:10.1007/s00395-012-0296-y CrossRef
    6. Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Enomoto T, Uemura Y, Shimizu Y, Yuasa D, Matsuo K, Miyabe M, Kataoka Y, Murohara T, Ouchi N (2012) CTRP9 protects against myocardial injury following ischemia-reperfusion through AMPK-dependent mechanism. J Biol Chem 287:18965-8973. doi:10.1074/jbc.M112.357939 CrossRef
    7. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295-14. doi:10.1016/j.pharmthera.2010.05.002 CrossRef
    8. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863-5866. doi:10.1074/jbc.C200251200 CrossRef
    9. Lacerda L, McCarthy J, Mungly SF, Lynn EG, Sack MN, Opie LH, Lecour S (2010) TNFalpha protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105:751-62. doi:10.1074/jbc.C200362200 CrossRef
    10. Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, Paul A, Chan L (2002) Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277:34658-4661 CrossRef
    11. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731-37. doi:10.1038/nm724 CrossRef
    12. Miyazaki Y, Pipek R, Mandarino LJ, Defronzo RA (2003) Tumor necrosis factor alpha and insulin resistance in obese type 2 diabetic patients. Int J Obes Relat Metab Disord 27:88-4. doi:10.1038/sj.ijo.0802187 CrossRef
    13. Park Y, Yang J, Zhang H, Chen X, Zhang C (2011) Effect of PAR2 in regulating TNF-alpha and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111-23. doi:10.1007/s00395-010-0129-9 CrossRef
    14. Peterson JM, Wei Z, Wong GW (2010) C1q/TNF-related Protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output. J Biol Chem 285:39691-9701. doi:10.1074/jbc.M110.180695 CrossRef
    15. Schaffler A, Buechler C (2012) CTRP family: linking immunity to metabolism. Trends Endocrinol Metab 23:194-04. doi:10.1016/j.tem.2011.12.003 CrossRef
    16. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096-103. doi:10.1038/nm1295 CrossRef
    17. Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418-423. doi:10.1161/01.CIR.0000055318.09997.1F CrossRef
    18. Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ, Ma XL (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115:1408-416. doi:10.1161/CIRCULATIONAHA.106.666941 CrossRef
    19. Wang Y, Gao E, Tao L, Lau WB, Yuan Y, Goldstein BJ, Lopez BL, Christopher TA, Tian R, Koch W, Ma XL (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119:835-44. doi:10.1161/CIRCULATIONAHA.108.815043 CrossRef
    20. Wang Y, Lau WB, Gao E, Tao L, Yuan Y, Li R, Wang X, Koch WJ, Ma XL (2010) Cardiomyocyte-derived adiponectin is biologically active in protecting against myocardial ischemia-reperfusion injury. Am J Physiol Endocrinol Metab 298:E663–E670. doi:10.1161/CIRCULATIONAHA.108.815043 CrossRef
    21. Wei Z, Peterson JM, Wong GW (2011) Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation OF AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem 286:15652-5665. doi:10.1074/jbc.M110.201087 CrossRef
    22. Wong GW, Krawczyk SA, Kitidis-mitrokostas C, Ge G, Spooner E, Hug C, Gimeno R, Lodish HF (2009) Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J 23:241-58. doi:10.1096/fj.08-114991 CrossRef
    23. Wong GW, Krawczyk SA, Kitidis-mitrokostas C, Revett T, Gimeno R, Lodish HF (2008) Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-γ agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J 416:161-77. doi:10.1042/BJ20081240 CrossRef
    24. Wong GW, Wang J, Hug C, Tsao TS, Lodish HF (2004) A family of Acrp30/adiponectin structural and functional paralogs. Proc Nat Acad Sci USA 101:10302-0307. doi:10.1073/pnas.0403760101 CrossRef
    25. Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q, Wang Y, Yuan Y, Wang X, Tao L, Li R, Koch W, Ma XL (2011) Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. Antioxid Redox Signal 15:1779-788. doi:10.1089/ars.2010.3722 CrossRef
    26. Zheng Q, Yuan Y, Yi W, Lau WB, Wang Y, Wang X, Sun Y, Lopez BL, Christopher TA, Peterson JM, Wong GW, Yu S, Yi D, Ma XL (2011) C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway. Arterioscler Thromb Vasc Biol 31:2616-623. doi:10.1161/ATVBAHA.111.231050 CrossRef
  • 作者单位:Hui Su (1) (2)
    Yuexing Yuan (1)
    Xiao-Ming Wang (2)
    Wayne Bond Lau (1)
    Yajing Wang (1)
    Xiaoliang Wang (1)
    Erhe Gao (3)
    Walter J. Koch (3)
    Xin-Liang Ma (1) (4)

    1. Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA, 19107, USA
    2. Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, 127 West Changle Rd, Xi’an, 710032, China
    3. Center for Translational Medicine, Temple University School of Medicine, 3500?N Broad St, Philadelphia, PA, 19140, USA
    4. Department of Emergency Medicine, 1020 Sansom Street, 239 Thompson Building, Philadelphia, PA, 19107, USA
  • ISSN:1435-1803
文摘
Recently identified as adiponectin (APN) paralogs, C1q/TNF-related proteins (CTRPs) share similar metabolic regulatory functions as APN. The current study determined cardiac expression of CTRPs, their potential cardioprotective function, and investigated whether and how diabetes may regulate cardiac CTRP expression. Several CTRPs are expressed in the heart at levels significantly greater than APN. Most notably, cardiac expression of CTRP9, the closest paralog of APN, exceeds APN by >100-fold. Cardiac CTRP9 expression was significantly reduced in high-fat diet-induced diabetic mice. In H9c2 cells, tumor necrosis factor-alpha (TNF-α) strongly inhibited CTRP9 expression (>60?%), and significantly reduced peroxisome proliferator activated receptor-gamma (PPARγ), a known transcription factor promoting adiponectin expression. The inhibitory effect of TNF-α on PPARγ and CTRP9 was reversed by Tiron or rosiglitazone. CTRP9 knockdown significantly enhanced, whereas CTRP9 overexpression significantly attenuated simulated ischemia/reperfusion injury in H9c2 cells. In vivo CTRP9 administration to diabetic mice significantly attenuated NADPH oxidase expression and superoxide generation, reduced infarct size, and improved cardiac function. To the best of our knowledge, this is the first study providing evidence that downregulation of CTRP9, an abundantly expressed and novel cell survival molecule in the heart, by TNF-α-initiated oxidative PPARγ suppression contributes to exacerbated diabetic cardiac injury. Preservation of CTRP9 expression or augmentation of CTRP9-initiated signaling mechanisms may be the potential avenues for ameliorating ischemic diabetic cardiac injury.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700