The Enthalpies of Mixing of Liquid Ni-Sn-Zn Alloys
详细信息    查看全文
  • 作者:Yu. Plevachuk (1)
    A. Yakymovych (2)
    S. Fürtauer (2)
    H. Ipser (2)
    H. Flandorfer (2)
  • 关键词:calorimetry ; enthalpy of mixing ; metallic alloys ; ternary
  • 刊名:Journal of Phase Equilibria and Diffusion
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:35
  • 期:4
  • 页码:359-368
  • 全文大小:607 KB
  • 参考文献:1. K.J. Puttlitz and K.A. Stalter, / Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, Marcel Dekker Inc., New York, 2004 CrossRef
    2. K.S. Kim, J.M. Yang, C.H. Yu, I.O. Jung, and H.H. Kim, Analysis on Interfacial Reactions Between Sn-Zn Solders and the Au/Ni Electrolytic-Plated Cu Pad, / J. Alloys Compd., 2004, 379, p 314-318 CrossRef
    3. I. Shohji, T. Nakamura, F. Mori, and S. Fujiuchi, Interface Reaction and Mechanical Properties of Lead-free Sn-Zn Alloy/Cu Joints, / Mater. Trans., 2002, 43, p 1797-1801 CrossRef
    4. K. Suganuma and K.S. Kim, Sn-Zn Low Temperature Solder, / J. Mater. Sci. Mater. Electron., 2007, 18, p 121-127 CrossRef
    5. X.Q. Wei, H.Z. Huang, L. Zhou, M. Zhang, and X.D. Liu, On the Advantages of Using a Hypoeutectic Sn-Zn as Lead-Free Solder Material, / Mater. Lett., 2007, 61, p 655-658 CrossRef
    6. J.X. Jiang, J.E. Lee, K.S. Kim, and K. Suganuma, Oxidation Behavior of Sn-Zn Solders Under High-Temperature and High-Humidity Conditions, / J. Alloys Compd., 2008, 462, p 244-251 CrossRef
    7. W.J. Zhu, H.S. Liu, J.S. Wang, G. Ma, and Z.P. Jin, Interfacial Reactions Between Sn-Zn Alloys and Ni Substrates, / J. Electron. Mater., 2010, 39, p 209-214 CrossRef
    8. A.K. Gain, Y.C. Chan, and W.K.C. Yung, Effect of Nano Ni Additions on the Structure and Properties of Sn-9Zn and Sn-Zn-3Bi Solders in Au/Ni/Cu Ball Grid Array Packages, / Mater. Sci. Eng. B, 2009, 162, p 92-98 CrossRef
    9. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723?K—Choice of an Analytical Representation of Integral and Partial Thermodynamic Functions of Mixing for This Ternary-System, / J. Chim. Phys., 1975, 72, p 83-88
    10. G.W. Toop, Predicting Ternary Activities Using Binary Data, / Trans. Met. Soc. AIME, 1965, 233, p 850-855
    11. O.J. Kleppa, A Thermodynamic Study of Liquid Metallic Solutions. 6. Calorimetric Investigations of the Systems Bismuth-Lead, Cadmium-Lead, Cadmium-Tin and Tin-Zinc, / J. Phys. Chem., 1955, 59, p 354-361 CrossRef
    12. W. Oelsen, Zur Kalorimetrie Und Thermodynamik Der Zinn-Zink-Legierungen, / Z. Metallkd., 1957, 48, p 1-8, in German
    13. E. Schürmann and H. Tr?ger, Die Empfindlichkeit und die Wiederholbarkeit von Messungen mit dem Kleinkalorimeter (The Sensitivity and Reproducibility of Measurements with Microcalorimeter), / Arch. Eisenhüttenwes., 1961, 32, p 397-408
    14. Z. Moser and R.S. K. Rzyman, Calorimetric Studies on Zn-Sn Liquid Solutions, / Bull. Pol. Acad. Sci. Tech. Sci., 1987, 35, p 461-464
    15. M. Genot and R. Hagege, Etude Thermodynamique Du Systeme Etainzinc, / Compt. Rend. Hebd. Acad. Sci., 1960, 251, p 2901-2903, in French
    16. W. Ptak, Thermodynamics of Liquid Zinc-Tin Solutions, / Archiwum Hutnictwa, 1960, 5, p 649-650
    17. K. Sano, K. Okajima, and S. Tatsuo, A Thermodynamic Study of the Liquid Ternary System Zinc-Cadmium and Zinc-Tin. III. The System Zinc-Cadmium-Tin, / Mem. Fac. Eng. Nagoya Univ., 1953, 5, p 299-305
    18. M. Fiorani and V. Valenti, Ricerche Termodinamiche su Sistemi Metallici - Nota III. Sistema Liquido Zonco-Stango, / Gazz. Chim. Ital., 1955, 85, p 607-615, in Italian
    19. E. Scheil and E.D. Muller, Dampfdruckmessungen an Flussigen Zink-Zinn-Legierungen, / Z. Metallkd., 1962, 53, p 389-395, in German
    20. K. Itagaki and A. Yazawa, Measurements of Thermo-Dynamic Quantities for Tin-Zinc and Indium-Antimony Alloys by Quantitative Thermal Analysis, / J. Jpn. Inst. Met., 1975, 39, p 880-887
    21. B.J. Lee, Thermodynamic Assessments of the Sn-Zn and In-Zn Binary Systems, / CALPHAD, 1996, 20, p 471-480 CrossRef
    22. R. Haddad, M. Gaune-Escard, J.P. Bros, A. Ranninger-Havlicek, E. Hayer, and K.L. Komarek, Thermodynamics of Nickel-Tin Liquid Alloys, / J. Alloys Compd., 1997, 247, p 82-92 CrossRef
    23. R. Luck, J. Tomiska, and B. Predel, Calorimetric Determination of the Enthalpy of Mixing of Liquid Nickel-Tin Alloys as a Function of Temperature, / Z. Metallkd., 1988, 79, p 345-349, in German
    24. H. Flandorfer, C. Luef, and U. Saeed, On the Temperature Dependence of the Enthalpies of Mixing in Liquid Binary (Ag, Cu, Ni)-Sn Alloys, / J. Non-Cryst. Solids, 2008, 354, p 2953-2972 CrossRef
    25. P. Nash, H. Choo, and R.B. Schwarz, Thermodynamic Calculation of Phase Equilibria in the Ti-Co and Ni-Sn Systems, / J. Mater. Sci., 1998, 33, p 4929-4936 CrossRef
    26. G. Ghosh, Thermodynamic Modeling of the Nickel-Lead-Tin System, / Metall. Mater. Trans. A, 1999, 30, p 1481-1494 CrossRef
    27. H.S. Liu, J. Wang, and Z.P. Jin, Thermodynamic Optimization of the Ni-Sn Binary System, / CALPHAD, 2004, 28, p 363-370 CrossRef
    28. H. Hagiwara, S. Sugino, and K. Yamaguchi, Activity of Zinc in Liquid Nickel-Zinc Alloys, / Bull. Univ. Osaka Prefect. Ser. A, 1977, 26, p 81-86
    29. T.G. Chart, J.K. Critchle, and R. Williams, Thermodynamic Data for Nickel-Zinc Alloys, / J. Inst. Met., 1968, 96, p 224
    30. G.P. Vassilev, T. Gomez-Acebo, and J.C. Tedenac, Thermodynamic Optimization of the Ni-Zn System, / J. Phase Equilib., 2000, 21, p 287-301 CrossRef
    31. X.P. Su, N.Y. Tang, and J.M. Toguri, Thermodynamic Assessment of the Ni-Zn System, / J. Phase Equilib., 2002, 23, p 140-148 CrossRef
    32. J. Miettinen, Thermodynamic Description of the Cu-Ni-Zn System Above 600?C, / CALPHAD, 2003, 27, p 263-274 CrossRef
    33. P. Franke and D. Neuschuetz, Ni-Zn (Nickel-Zinc) Binary System, in / Part 5: Binary Systems Supplement 1. Landolt-Boernstein - Group IV Physical Chemistry, 2007, p 1-4
    34. J. Chang, S.K. Seo, and H.M. Lee, Phase Equilibria in the Sn-Ni-Zn Ternary System: Isothermal Sections at 200°C, 500°C, and 800°C, / J. Electron. Mater., 2010, 39, p 2643-2652 CrossRef
    35. C. Schmetterer, D. Rajamohan, H. Ipser, and H. Flandorfer, The High-Temperature Phase Equilibria of the Ni-Sn-Zn System: Isothermal Sections, / Intermetallics, 2011, 19, p 1489-1501 CrossRef
    36. V. Gandova, J. Romanowska, and G. Vassilev, Comparison Between Sn-Ni-Zn Liquid Phase Thermodynamic Assessments Performed by the CALPHAD Method and by Geometrical Models, / RMZ M. & G., 2010, 57, p 441-452
    37. Y. Yuan, S. Delsante, D.J. Li, and G. Borzone, The Isothermal Section of the Ni-Sn-Zn Phase Diagram at 873 K, / Intermetallics, 2011, 19, p 1646-1650 CrossRef
    38. H. Flandorfer, F. Gehringer, and E. Hayer, Individual Solutions for Control and Data Acquisition with the PC, / Thermochim. Acta, 2002, 382, p 77-87 CrossRef
    39. A.T. Dinsdale, SGTE Data for Pure Elements, / CALPHAD, 1991, 15, p 317-425 CrossRef
    40. M. Rechchach, A. Sabbar, H. Flandorfer, and H. Ipser, Enthalpies of Mixing of Liquid In-Sn and In-Sn-Zn Alloys, / Thermochim. Acta, 2010, 502, p 66-72 CrossRef
    41. V. Gandova, D. Soares, K. Lilova, J.-C. Tedenac, and G.P. Vassilev, Phase Equilibria in the Sn-Zn-Ni System, / Int. J. Mater. Res., 2011, 102, p 257-268 CrossRef
    42. V.D. Gandova, P. Broz, J. Bur?ík, and G.P. Vassilev, Thermochemical and Phase Diagram Studies of the Sn-Zn-Ni System, / Thermochim. Acta, 2011, 524, p 47-55 CrossRef
  • 作者单位:Yu. Plevachuk (1)
    A. Yakymovych (2)
    S. Fürtauer (2)
    H. Ipser (2)
    H. Flandorfer (2)

    1. Department of Metal Physics, Ivan Franko National University, Kyrylo and Mephodiy Str. 8, Lviv, 79005, Ukraine
    2. Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, W?hringer Str. 42, 1090, Wien, Austria
  • ISSN:1863-7345
文摘
The partial and integral enthalpies of mixing of liquid ternary Ni-Sn-Zn alloys were determined. The system was investigated along two sections x Ni/x Sn?≈?:9, x Ni/x Sn?≈?:6 at 1073?K and along two sections x Sn/x Zn?≈?:1, x Sn/x Zn?≈?:1 at 873?K. The integral enthalpy of mixing at each temperature is described using the Redlich-Kister-Muggianu model for substitutional ternary solutions. In addition, the experimental results were compared with data calculated according to the Toop extrapolation model. The minimum integral enthalpy of approx. ?0000?J?mol-1 corresponds to the minimum in the constituent binary Ni-Sn system, the maximum of approx. 3000?J?mol-1 is equal to the maximum in the binary Sn-Zn system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700