Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest
详细信息    查看全文
  • 作者:Hiromi Baba ; Jun-ichi Takahara ; Fumiyoshi Yamashita
  • 关键词:in silico prediction ; quantitative structure鈥損roperty relationship ; skin permeability ; solvent effect ; support vector regression
  • 刊名:Pharmaceutical Research
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:32
  • 期:11
  • 页码:3604-3617
  • 全文大小:2,410 KB
  • 参考文献:1.Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115鈥?4.CrossRef PubMed
    2.Bartek MJ, LaBudde JA, Maibach HI. Skin permeability in vivo: comparison in rat, rabbit, pig and man. J Invest Dermatol. 1972;58(3):114鈥?3.CrossRef PubMed
    3.Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol. 1975;64(3):190鈥?.CrossRef PubMed
    4.Zhang Q, Grice JE, Li P, Jepps OG, Wang GJ, Roberts MS. Skin solubility determines maximum transepidermal flux for similar size molecules. Pharm Res. 2009;26(8):1974鈥?5.CrossRef PubMed
    5.Takeuchi H, Ishida M, Furuya A, Todo H, Urano H, Sugibayashi K. Influence of skin thickness on the in vitro permeabilities of drugs through Sprague鈥揇awley rat or Yucatan micropig skin. Biol Pharm Bull. 2012;35(2):192鈥?02.CrossRef PubMed
    6.Karadzovska D, Riviere JE. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur J Pharm Sci. 2013;50(5):569鈥?6.CrossRef PubMed
    7.Chauhan P, Shakya M. Role of physicochemical properties in the estimation of skin permeability: in vitro data assessment by partial least-squares regression. SAR QSAR Environ Res. 2010;21(5鈥?):481鈥?4.CrossRef PubMed
    8.Abraham MH, Martins F. Human skin permeation and partition: general linear free-energy relationship analyses. J Pharm Sci. 2004;93(6):1508鈥?3.CrossRef PubMed
    9.Buchwald P, Bodor N. A simple, predictive, structure-based skin permeability model. J Pharm Pharmacol. 2001;53(8):1087鈥?8.CrossRef PubMed
    10.Cronin MT, Dearden JC, Moss GP, Murray-Dickson G. Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Eur J Pharm Sci. 1999;7(4):325鈥?0.CrossRef PubMed
    11.Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663鈥?.CrossRef PubMed
    12.Baba H, Takahara JI, Mamitsuka H. In silico predictions of human skin permeability using nonlinear quantitative structure鈥損roperty relationship models. Pharm Res. 2015. doi:10.鈥?007/鈥媠11095-015-1629-y .
    13.Khajeh A, Modarress H. Linear and nonlinear quantitative structure鈥損roperty relationship modelling of skin permeability. SAR QSAR Environ Res. 2014;25(1):35鈥?0.CrossRef PubMed
    14.Neely BJ, Madihally SV, Robinson Jr RL, Gasem KA. Nonlinear quantitative structure鈥損roperty relationship modeling of skin permeation coefficient. J Pharm Sci. 2009;98(11):4069鈥?4.PubMed Central CrossRef PubMed
    15.Baert B, Deconinck E, Van Gele M, Slodicka M, Stoppie P, Bod茅 S, et al. Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds. Bioorg Med Chem. 2007;15(22):6943鈥?5.CrossRef PubMed
    16.Katritzky AR, Dobchev DA, Fara DC, H眉r E, T盲mm K, Kurunczi L, et al. Skin permeation rate as a function of chemical structure. J Med Chem. 2006;49(11):3305鈥?4.CrossRef PubMed
    17.Neumann D, Kohlbacher O, Merkwirth C, Lengauer T. A fully computational model for predicting percutaneous drug absorption. J Chem Inf Model. 2006;46(1):424鈥?.CrossRef PubMed
    18.Lim CW, Fujiwara S, Yamashita F, Hashida M. Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network. Biol Pharm Bull. 2002;25(3):361鈥?.CrossRef PubMed
    19.Smith EW, Maibach HI, editors. Percutaneous penetration enhancers, second ed. New York: CRC Press; 2005.
    20.Barry BW. Breaching the skin鈥檚 barrier to drugs. Nat Biotechnol. 2004;22(2):165鈥?.CrossRef PubMed
    21.Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1鈥?):12鈥?1.CrossRef PubMed
    22.Watkinson RM, Guy RH, Hadgraft J, Lane ME. Optimisation of cosolvent concentration for topical drug delivery - II: influence of propylene glycol on ibuprofen permeation. Skin Pharmacol Physiol. 2009;22(4):225鈥?0.CrossRef PubMed
    23.Roy SD, Manoukian E. Transdermal delivery of ketorolac tromethamine: permeation enhancement, device design, and pharmacokinetics in healthy humans. J Pharm Sci. 1995;84(10):1190鈥?.CrossRef PubMed
    24.Sathyan G, Ritschel WA, Hussain AS. Transdermal delivery of tacrine: I: Identification of a suitable delivery vehicle. Int J Pharm. 1995;114(1):75鈥?3.CrossRef
    25.Goldberg-Cettina M, Liu P, Nightingale J, Kurihara-Bergstrom T. Enhanced transdermal delivery of estradiol in vitro using binary vehicles of isopropyl myristate and short-chain alkanols. Int J Pharm. 1995;114(2):237鈥?5.CrossRef
    26.Pardo A, Shiri Y, Cohen S. Percutaneous absorption of physostigmine: optimization of delivery from a binary solvent by thermodynamic control. J Pharm Sci. 1990;79(7):573鈥?.CrossRef PubMed
    27.Riviere JE, Brooks JD. Prediction of dermal absorption from complex chemical mixtures: incorporation of vehicle effects and interactions into a QSPR framework. SAR QSAR Environ Res. 2007;18(1鈥?):31鈥?4.CrossRef PubMed
    28.Riviere JE, Brooks JD. Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used. Toxicol Sci. 2011;119(1):224鈥?2.PubMed Central CrossRef PubMed
    29.Ghafourian T, Samaras EG, Brooks JD, Riviere JE. Modelling the effect of mixture components on permeation through skin. Int J Pharm. 2010;398(1鈥?):28鈥?2.CrossRef PubMed
    30.Ghafourian T, Samaras EG, Brooks JD, Riviere JE. Validated models for predicting skin penetration from different vehicles. Eur J Pharm Sci. 2010;41(5):612鈥?.CrossRef PubMed
    31.Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MT, Gramatica P, et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim. 2005;33(2):155鈥?3.PubMed
    32.Moss GP, Sun Y, Prapopoulou M, Davey N, Adams R, Pugh WJ, et al. The application of Gaussian processes in the prediction of percutaneous absorption. J Pharm Pharmacol. 2009;61(9):1147鈥?3.CrossRef PubMed
    33.Patel J. Science of the science, drug discovery and artificial neural networks. Curr Drug Discov Technol. 2013;10(1):2鈥?.PubMed
    34.Smola AJ, Sch枚lkopf B. A tutorial on support vector regression. Stat Comput. 2004;14(3):199鈥?22.CrossRef
    35.Breiman L. Random forests. Mach Learn. 2001;45(1):5鈥?2.CrossRef
    36.Monte-Moreno E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif Intell Med. 2011;53(2):127鈥?8.CrossRef PubMed
    37.Yap CW, Li ZR, Chen YZ. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J Mol Graph Model. 2006;24(5):383鈥?5.CrossRef PubMed
    38.El-Sebakhy EA. Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. J Petrol Sci Eng. 2009;64(1鈥?):25鈥?4.CrossRef
    39.Bharathidason S, Venkataeswaran CJ. Improving classification accuracy based on random forest model with uncorrelated high performing trees. Int J Comput Appl. 2014;101(13):26鈥?0.
    40.Blank IH, McAuliffe DJ. Penetration of benzene through human skin. J Investig Dermatol. 1985;85(6):522鈥?.CrossRef PubMed
    41.Burkert U, Norman LA. Molecular mechanics, ACS monograph 177. Washington, DC: American Chemical Society; 1982.
    42.Stewart JJ. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2013;19(1):1鈥?2.PubMed Central CrossRef PubMed
    43.Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42:D1091鈥?.PubMed Central CrossRef PubMed
    44.We have obtained structures of 6475 compounds as approved drugs in DrugBank: http://鈥媤ww.鈥媎rugbank.鈥媍a/鈥媎ownloads#structures/.
    45.Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.6-2. 2014. Available from http://鈥婥RAN.鈥婻-project.鈥媜rg/鈥媝ackage=鈥媏1071/鈥?鈥?/cite>
    46.Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947鈥?8.CrossRef PubMed
    47.Liaw A, Wiener M. Classification and regression by random Forest. R News. 2002;2:18鈥?2.
    48.Shao J. Linear model selection by cross-validation. J Am Stat Assoc. 1993;88(442):486鈥?4.CrossRef
    49.Zhang P. Model selection via multifold cross validation. Ann Stat. 1993;21(1):299鈥?13.CrossRef
    50.Burman P. A Comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika. 1989;76(3):503鈥?4.CrossRef
    51.Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20(4):269鈥?6.CrossRef PubMed
    52.Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci. 2008;27(3):302鈥?3.
    53.Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model. 2009;49(7):1669鈥?8.CrossRef PubMed
    54.Ojha PK, Mitra I, Das RN, Roy K. Further exploring rm2 metrics for validation of QSPR models. Chemom Intell Lab Syst. 2011;107(1):194鈥?05.CrossRef
    55.Chirico N, Gramatica P. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model. 2011;51(9):2320鈥?5.
    56.Chirico N, Gramatica P. Real external predictivity of QSAR models.Part 2.New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model. 2012;52(8):2044鈥?8.CrossRef PubMed
    57.Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H. Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model. 2012;52(2):396鈥?08.CrossRef PubMed
    58.Funar-Timofei S, Iliescu S, Suzuki T. Correlations of limiting oxygen index with structural polyphosphoester features by QSPR approaches. Struct Chem. 2014;25(6):1847鈥?3.CrossRef
    59.Fornberg B, Sloan DM. A review of pseudospectral methods for solving partial differential equations. Acta Numer. 1994;3:203鈥?7.CrossRef
    60.Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165鈥?.CrossRef PubMed
    61.Yano T, Nakagawa A, Tsuji M, Noda K. Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci. 1986;39(12):1043鈥?0.CrossRef PubMed
    62.Kasting GB, Smith RL, Cooper ER. Effect of lipid solubility and molecular size on percutaneous absorption. In: Shroot B, Schaefer H, editors. Skin pharmacokinetics. Basel: Kargar; 1987. p. 138鈥?3.
    63.Boonen J, Veryser L, Taevernier L, Roche N, Peremans K, Burvenich C, et al. Risk evaluation of impurities in topical excipients: the acetol case. J Pharm Anal. 2014;4(5):303鈥?5.CrossRef
    64.Inselberg A. Parallel coordinates: a tool for visualizing multidimensional geometry. New York: Springer; 2009.CrossRef
    65.Shahlaei M. Descriptor selection methods in quantitative structure-activity relationship studies: a review study. Chem Rev. 2013;113(10):8093鈥?03.CrossRef PubMed
    66.Geinoz S, Guy RH, Testa B, Carrupt PA. Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: A critical evaluation. Pharm Res. 2004;21(1):83鈥?2.CrossRef PubMed
    67.Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: Theory and invitro experimental measurement. AIChE J. 1975;21(5):985鈥?6.CrossRef
    68.Verhaar HJM, van Leeuwen CJ, Hermens JLM. Classifying environmental pollutants 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere. 1992;25(4):471鈥?1.CrossRef
  • 作者单位:Hiromi Baba (1) (2)
    Jun-ichi Takahara (1)
    Fumiyoshi Yamashita (2)
    Mitsuru Hashida (2) (3)

    1. Kyoto R&D Center, Maruho Co., Ltd., 93 Awata-cho, Chudoji, Shimogyo-ku, 600-8815, Kyoto, Japan
    2. Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
    3. Institute for Integrated Cell-Material Sciences, Kyoto University, 46-29, Yoshida-shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Purpose The solvent effect on skin permeability is important for assessing the effectiveness and toxicological risk of new dermatological formulations in pharmaceuticals and cosmetics development. The solvent effect occurs by diverse mechanisms, which could be elucidated by efficient and reliable prediction models. However, such prediction models have been hampered by the small variety of permeants and mixture components archived in databases and by low predictive performance. Here, we propose a solution to both problems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700