Computational design of zinc-ion-responsive two-photon fluorescent probes with conjugated multi-structures
详细信息    查看全文
  • 作者:Shuang Huang ; Bao-Zhu Yang ; Xing-Fang Jiang ; Ai-Min Ren
  • 关键词:Fluorescent probe ; Zinc ion ; Multi ; structure ; Two ; photon absorption ; Near ; infrared region
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 全文大小:2,586 KB
  • 参考文献:1.Kim D, Ryu HG, Ahn KH (2014) Org Biomol Chem 12:4550–4566CrossRef
    2.Zhou LY, Zhang XB, Wang QQ, Lv YF, Mao GJ, Luo AL, Wu YX, Wu Y, Zhang J, Tan WH (2014) J Am Chem Soc 136:9838–9841CrossRef
    3.Luo XB, Wu WB, Deng F, Chen DZ, Luo SL, Au C (2014) Microchim Acta 181:1361–1367CrossRef
    4.Yao S, Belfield KD (2012) Eur J Org Chem 3199–3217
    5.Capodilupo AL, Vergaro V, Fabiano E, Giorgi MD, Baldassarre F, Cardone A, Maggiore A, Maiorano V, Sanvitto D, Gigli G, Ciccarella G (2015) J Mater Chem B 3:3315–3323CrossRef
    6.Zheng KB, Lin WY, Tan L, Chen H, Cui HJ (2014) Chem Sci 5:3439–3448
    7.Zipfel WR, Williams RM, Webb WW (2003) Nat Biotechnol 21:1369–1377CrossRef
    8.Helmchen F, Denk W (2005) Nat Methods 2:932–940CrossRef
    9.Williams RM, Zipfel WR, Webb WW (2001) Curr Opin Chem Biol 5:603–608CrossRef
    10.Que EL, Domaille DW, Chang CJ (2008) Chem Rev 108:1517–1549CrossRef
    11.Berg JM, Shi Y (1996) Science 271:1081–1085CrossRef
    12.O’Halloran TV (1993) Science 261:715–724CrossRef
    13.Williams RJP, Fraústo JJR (2000) Coord Chem Rev 200–202:247–348
    14.Coleman JE (1992) Annu Rev Biochem 61:897–946CrossRef
    15.Sorensen MB, Stoltenberg M, Juh LS, Danscher G, Ernst E (1997) Prostate 31:125–130CrossRef
    16.Ciglenečki I, Bura-Nakić E, Inzelt G (2007) Electroanalysis 19:1437–1445CrossRef
    17.Zhang Y, Guo X, Si W, Jia L, Qian X (2008) Org Lett 10:473–476CrossRef
    18.Woodroofe CC, Lippard SJ (2003) J Am Chem Soc 125:11458–11459CrossRef
    19.Joshi BP, Cho WM, Kim J, Juyoung Y, Lee KH (2007) Bioorg Med Chem Lett 17:6425–6429CrossRef
    20.Hu Q, Tan YQ, Liu M, Yu JC, Cui YJ, Yang Y (2014) Dyes Pigments 107:45–50CrossRef
    21.Divya KP, Sreejith S, Ashokkumar P, Yuzhan K, Peng Q, Maji SK, Tong Y, Yu H, Zhao Y, Ramamurthyc P, Ajayaghosh A (2014) Chem Sci 5:3469–3474CrossRef
    22.Jiang J, MacLachlan MJ (2010) Org Lett 12:1020–1023CrossRef
    23.Zhao D, Moore JS (2003) Chem Commun 807–818
    24.Gokel GW, Leevy WM, Weber ME (2004) Chem Rev 104:2723–2750CrossRef
    25.Atwood JL, Barbour LJ, Hardie MJ, Raston CL (2001) Coord Chem Rev 222:3–32CrossRef
    26.Gao J, Zingaro RA, Reibenspies JH, Martell AE (2004) Org Lett 6:2453–2455CrossRef
    27.Paluch M, Lisowski J, Lis T (2006) Dalton Trans 381–388
    28.Hai Y, Chen JJ, Zhao P, Lv HB, Yu Y, Xu PY, Zhang JL (2011) Chem Commun 47:2435–2437CrossRef
    29.Huang S, Zou LY, Ren AM, Guo JF, Liu XT, Feng JK, Yang BZ (2013) Inorg Chem 52:5702–5713CrossRef
    30.Cozzi PG (2003) Angew Chem Int Ed 42:2895–2898CrossRef
    31.Saito B, Katsuki T (2004) Synlett 15:1557–1560
    32.Zelder FH, Rebek J Jr (2006) Chem Commun 753–754
    33.Splan KE, Massari AM, Morris GA, Sun SS, Reina E, Nguyen ST, Hupp JT (2003) Eur J Inorg Chem 2348–2351
    34.Escudero-Adán EC, Belmonte MM, Martin E, Salassa G, Benet-Buchholz J, Kleij AW (2011) J Org Chem 76:5404–5412CrossRef
    35.Gallant AJ, Chong JH, MacLachlan MJ (2006) Inorg Chem 45:5248–5250CrossRef
    36.Kleij AW (2009) Dalton Trans 4635–4639
    37.Kawase T, Fujiwara N, Tsutumi M, Oda M, Maeda Y, Wakahara T, Akasaka T (2004) Angew Chem Int Ed 43:5060–5062CrossRef
    38.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revisions A.02 and B.01. Gaussian, Inc., Wallingford
    39.Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRef
    40.Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ (1982) J Chem Phys 77:3654–3665CrossRef
    41.Cramer CJ (2002) Essentials of computational chemistry: theories and models. Wiley, New York, p 87
    42.Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145–4185CrossRef
    43.Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRef
    44.Jacquemin D, Perpete EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105
    45.Kogej T, Beljonne D, Meyers F, Perry JW, Marder SR, Brédas JL (1998) Chem Phys Lett 298:1–6CrossRef
    46.Zojer E, Beljonne D, Kogej T, Vogel H, Marder SR, Perry JW, Brédas JL (2002) J Chem Phys 116:3646–3658CrossRef
    47.Orr BJ, Ward JF (1971) Mol Phys 20:513–526CrossRef
    48.Bishop DM, Luis JM, Kirtman B (2002) J Chem Phys 116:9729–9739CrossRef
    49.Beljonne D, Wenseleers W, Zojer E, Shuai ZG, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL (2002) Adv Funct Mater 12:631–641CrossRef
    50.Anderson WP, Edwards WD, Zerner MC (1986) Inorg Chem 25:2728–2732CrossRef
    51.Zerner MC (2000) ZINDO, a general semi-empirical program package. Department of Chemistry, University of Florida, Gainesville
    52.Huang S, Ren AM, Guo JF, Liu XT, Feng JK (2012) Polymer 53:2991–3000CrossRef
    53.Xu Z, Ren AM, Guo JF, Liu XT, Huang S, Feng JK (2013) Photochem Photobiol 89:300–309CrossRef
    54.Zheng XY, Wang XY, Yi SF, Wang NQ, Peng YM (2010) J Comput Chem 31:1458–1468CrossRef
    55.Vainrub A, Pettitt BM (2003) Biopolymers 68:265–270CrossRef
    56.Yang R, Guo XF, Wang W, Zhang Y, Jia LH (2012) J Fluoresc 22:1065–1071CrossRef
    57.Xu YQ, Xiao LL, Zhang YF, Sun SG, Pang Y (2014) RSC Adv 4:4827–4830CrossRef
    58.Wang JL, Lin WY, Li WL (2012) Chem Eur J 18:13629–13632CrossRef
    59.Yang BZ, Zhang Q, Zhong J, Huang S, Zhang HX (2012) Org Electron 13:2568–2574CrossRef
    60.Martin RL (2003) J Chem Phys 118:4775–4777CrossRef
    61.Weissleder R, Ntziachristos V (2003) Nat Med 9:123–128CrossRef
    62.Liu XT, Guo JF, Ren AM, Huang S, Feng JK (2012) J Org Chem 77:585–597CrossRef
  • 作者单位:Shuang Huang (1) (2)
    Bao-Zhu Yang (3)
    Xing-Fang Jiang (1) (2)
    Ai-Min Ren (4)

    1. School of Mathematics and Physics, Changzhou University, Changzhou, 213164, People’s Republic of China
    2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, People’s Republic of China
    3. School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People’s Republic of China
    4. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
A series of conjugated multi-structured fluorescent probe molecules based on a salen ligand were designed and investigated in dimethyl sulfoxide solvent using a quantum-chemical method. The results indicate that the one-photon absorption and fluorescence emission spectra (λ O and λ EM) of these molecules generally show redshifts (of 23.1–74.5 and 22.7–116.6 nm, respectively) upon the coordination of the molecules to Zn2+. Large Stokes shifts (1511.2–11744.1 cm−1) were found for the molecules, meaning that interference between λ O and λ EM can be avoided for these molecules. The two-photon absorption spectra of the molecules usually present blueshifts, but the two-photon absorption cross-section (δ) greatly increases (by 221.5–868.0 GM) upon the coordination of the molecules with Zn2+. Most of the molecules show strong two-photon absorption peaks in the range 678.2–824.4 nm, i.e., in the near-infrared region. In a word, the expanded π-conjugated frameworks of these molecules lead to redshifted λ O and λ EM and enhanced δ values. Moreover, (L-phenyl)​2 and (L-phenyl-ethynyl)2 are the most suitable of the multi-structured molecules examined in this work for use as two-photon fluorescent probes for zinc ion detection in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700