Exploring Cross-Talk Between Oxidative Damage and Excitotoxicity and the Effects of Riluzole in the Rat Cortex After Exposure to Methylmercury
详细信息    查看全文
  • 作者:Yu Deng (1)
    Zhaofa Xu (1)
    Bin Xu (1)
    Wei Liu (1)
    Yangang Wei (1)
    Yuehui Li (1)
    Shu Feng (1)
    Tianyao Yang (1)
  • 关键词:Cross ; talk ; Oxidative damage ; Excitotoxicity ; Methylmercury ; Riluzole ; Cortex
  • 刊名:Neurotoxicity Research
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:26
  • 期:1
  • 页码:40-51
  • 全文大小:
  • 参考文献:1. Ahamed M, Akhtar MJ, Siddiqui MA et al (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283(2-):101-08 CrossRef
    2. Allgaier C (2002) Ethanol sensitivity of NMDA receptors. Neuroche Int 41(6):377-82 CrossRef
    3. Aschner M, Clarkson TW (1987) Mercury 203 distribution in pregnant and nonpregnant rats following systemic infusions with thiol-containing amino acids. Teratology 36(3):321-28 CrossRef
    4. Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/riluzole study group. N Engl J Med 330(9):585-91 CrossRef
    5. Castoldi AF, Coccini T, Ceccatelli S et al (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55(2):197-03 CrossRef
    6. Chan E, Yung WH, Baumann KI (1996) Cytoplasmic Ca2+ concentrations in intact Merkel cells of an isolated, functioning rat sinus hair preparation. Exp Brain Res 108(3):357-66 CrossRef
    7. Curi TC, De Melo MP, De Azevedo RB et al (1997) Glutamine utilization by rat neutrophils: presence of phosphate-dependent glutaminase. Am J Physiol 273(4 Pt 1):1124-129
    8. Deng Y, Xu Z, Xu B et al (2009) The protective effect of riluzole on manganese caused disruption of glutamate-glutamine cycle in rats. Brain Res 1289:106-17 CrossRef
    9. Distelmaier F, Valsecchi F, Forkink M et al (2012) Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells. Antioxid Redox Signal 17(12):1657-669 CrossRef
    10. Farina M, Aschner M, Rocha JB (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 256(3):405-17 CrossRef
    11. Franco R, Cidlowski JA (2012) Glutathione efflux and cell death. Antioxid Redox Signal 17(12):1694-713 CrossRef
    12. Fumagalli E, Funicello M, Rauen T (2008) Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol 578(2-):171-76 CrossRef
    13. Gabryel B, Ma?ecki A (2006) Ebselen attenuates oxidative stress in ischemic astrocytes depleted of glutathione. Comparison with glutathione precursors. Pharmacol Rep 58(3):381-92
    14. Gyengesi E, Paxinos G, Andrews ZB (2012) Oxidative stress in the hypothalamus: the importance of calcium signaling and mitochondrial ROS in body weight regulation. Curr Neuropharmacol 10(4):344-53 CrossRef
    15. Had-Aissouni L (2012) Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids 42(1):181-97 CrossRef
    16. He Y, Cui J, Lee JC et al (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro 3(1):e00050 CrossRef
    17. Hong YS, Kim YM, Lee KE (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45(6):353-63 CrossRef
    18. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36(10):1208-213 CrossRef
    19. Jaekel B, Mühlberg K, Garcia de Arriba S et al (2006) Neuroprotection associated with alternative splicing of NMDA receptors in rat cortical neurons. Br J Pharmacol 147(6):622-33 CrossRef
    20. Johnson FO, Yuan Y, Hajela RK et al (2011) Exposure to an environmental neurotoxicant hastens the onset of amyotrophic lateral sclerosis-like phenotype in human Cu2+/Zn2+ superoxide dismutase 1 G93A mice: glutamate-mediated excitotoxicity. J Pharmacol Exp Ther 338(2):518-27 CrossRef
    21. Jyrkk?nen HK, Kuosmanen S, Hein?niemi M et al (2011) Novel insights into the regulation of antioxidant-response-element-mediated gene expression by electrophiles: induction of the transcriptional repressor BACH1 by Nrf2. Biochem J 440(2):67-74 CrossRef
    22. Kolls JK (2006) Oxidative stress in sepsis: a redox redux. J Clin Invest 116(4):860-63 CrossRef
    23. Liu Y, Wong TP, Aarts M et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27(11):2846-857 CrossRef
    24. Liu CH, Jiao H, Guo ZH et al (2013) Up-regulated GLT-1 resists glutamate toxicity and attenuates glutamate-induced calcium loading in cultured neurocytes. Basic Clin Pharmacol Toxicol 112(1):19-4 CrossRef
    25. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265-75
    26. Mehta A, Prabhakar M, Kumar P et al (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1-):6-8 CrossRef
    27. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S-015S
    28. Muller A, Maurin L, Bonne C (1998) Free radicals and glutamate uptake in the retina. Gen Pharmacol 30(3):315-18 CrossRef
    29. Murali G, Panneerselvam KS, Panneerselvam C (2008) Age-associated alterations of lipofuscin, membrane-bound ATPases and intracellular calcium in cortex, striatum and hippocampus of rat brain: protective role of glutathione monoester. Int J Dev Neurosci 26(2):211-15 CrossRef
    30. Ni M, Li X, Yin Z et al (2010) Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 116(2):590-03 CrossRef
    31. Polunas M, Halladay A, Tjalkens RB et al (2011) Role of oxidative stress and the mitochondrial permeability transition in methylmercury cytotoxicity. Neurotoxicology 32(5):526-34 CrossRef
    32. Rastogi RP, Singh SP, H?der DP et al (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2-7-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397(3):603-07 CrossRef
    33. Renis M, Cardile V, Russo A et al (1998) Glutamine synthetase activity and HSP70 levels in cultured rat astrocytes: effect of 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. Brain Res 783(1):143-50 CrossRef
    34. Rinwa P, Jaggi AS, Singh N (2012) Pharmacological investigation of memory restorative effect of riluzole in mice. Indian J Pharmacol 44(3):366-71 CrossRef
    35. Roos D, Seeger R, Puntel R et al (2012) Role of calcium and mitochondria in MeHg-mediated cytotoxicity. J Biomed Biotechnol 2012:248764 CrossRef
    36. Shen J (2013) Modeling the glutamate-glutamine neurotransmitter cycle. Front Neuroenergetics 5:1 CrossRef
    37. Stockwell PB, Corns WT (1993) The role of atomic fluorescence spectrometry in the automatic environmental monitoring of trace element analysis. J Automatic Chem 15(3):79-4 CrossRef
    38. Storch A, Burkhardt K, Ludolph AC et al (2000) Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J Neurochem 75(6):2259-269 CrossRef
    39. Th?rn I, Olsson-Str?mberg U, Ohlsen C et al (2005) The impact of RNA stabilization on minimal residual disease assessment in chronic myeloid leukemia. Haematologica 90(11):1471-476
    40. Toyama T, Sumi D, Shinkai Y et al (2007) Cytoprotective role of Nrf2/Keap1 system in methylmercury toxicity. Biochem Biophys Res Commun 363(3):645-50 CrossRef
    41. Trotti D, Rossi D, Gjesdal O et al (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271(11):5976-979 CrossRef
    42. Vahter ME, Mottet NK, Friberg LT et al (1995) Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol Appl Pharmacol 134(2):273-84 CrossRef
    43. Villalba M, Martínez-Serrano A, B?rner C et al (1992) NMDA-induced increase in [Ca2+]i and 45Ca2+ uptake in acutely dissociated brain cells derived from adult rats. Brain Res 570(1-):347-53 CrossRef
    44. Zarate CA, Manji HK (2008) Riluzole in psychiatry: a systematic review of the literature. Expert Opin Drug Metab Toxicol 4(9):1223-234 CrossRef
  • 作者单位:Yu Deng (1)
    Zhaofa Xu (1)
    Bin Xu (1)
    Wei Liu (1)
    Yangang Wei (1)
    Yuehui Li (1)
    Shu Feng (1)
    Tianyao Yang (1)

    1. Department of Environmental Health, School of Public Health, China Medical University, North 2nd Road 92, Heping Ward, Shenyang, 110001, Liaoning, People’s Republic of China
  • ISSN:1476-3524
文摘
Methylmercury (MeHg) is a ubiquitous environmental toxin that causes neurologic and developmental diseases. Oxidative damage and excitotoxicity are putative mechanisms, which underlie MeHg-induced neurotoxicity. In this study, the cross-talk between the oxidative damage and excitotoxicity pathways and the protective effects of riluzole in the rat cortex were explored. Rats were injected with MeHg and/or riluzole, and cold vapor atomic fluorescence spectrometry, hematoxylin and eosin staining, flow cytometry, fluorescence assays, spectrophotometry, real-time PCR, and Western blotting were used to evaluate neurotoxicity. The present study showed that (1) MeHg accumulated in the cerebral cortex and caused pathology. (2) MeHg caused oxidative damage by inducing glutathione (GSH) depletion, reactive oxygen species (ROS) production, inhibition of antioxidant enzyme activity, and alteration of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. (3) MeHg disrupted the glutamate transporters (GluTs), glutamate–glutamine cycle, and N-methyl-d-aspartate receptor expression and induced excitotoxicity. (4) Excitotoxicity resulted in disruption of GSH synthesis, calcium overloading, oxidative damage, and excessive ROS production. (5) Pretreatment with riluzole antagonized MeHg neurotoxicity by down regulating cross-talk between the oxidative damage and excitotoxicity pathways. In conclusion, the cross-talk between the oxidative damage and excitotoxicity pathways caused by MeHg exposure was linked by GluTs and calcium and inhibited by riluzole treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700