Genetic variations in the homologous recombination repair pathway genes modify risk of glioma
详细信息    查看全文
  • 作者:Haishi Zhang ; Yanhong Liu ; Keke Zhou ; Chengcheng Zhou
  • 关键词:Glioma ; Homologous recombination pathway ; Functional polymorphism ; Susceptibility
  • 刊名:Journal of Neuro-Oncology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:126
  • 期:1
  • 页码:11-17
  • 全文大小:369 KB
  • 参考文献:1.Wrensch M et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905鈥?08PubMedCentral PubMed CrossRef
    2.Sanson M et al (2011) Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet 20(14):2897鈥?904PubMedCentral PubMed CrossRef
    3.Shete S et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899鈥?04PubMedCentral PubMed CrossRef
    4.Chen H et al (2011) Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a chinese population. Am J Epidemiol 173(8):915鈥?22PubMed CrossRef
    5.Jiang M et al (2008) Retinoic acid induces caspase-8 transcription via phospho-CREB and increases apoptotic responses to death stimuli in neuroblastoma cells. Biochim Biophys Acta 1783(6):1055鈥?067PubMedCentral PubMed CrossRef
    6.Das A, Banik NL, Ray SK (2007) Differentiation decreased telomerase activity in rat glioblastoma C6 cells and increased sensitivity to IFN-gamma and taxol for apoptosis. Neurochem Res 32(12):2167鈥?183PubMed CrossRef
    7.Ding H et al (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117(7):873鈥?86PubMed CrossRef
    8.Barber LJ et al (2008) RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135(2):261鈥?71PubMedCentral PubMed CrossRef
    9.Fuxe J et al (2000) Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ 11(7):373鈥?84PubMed
    10.Little MP et al (1998) Risks of brain tumour following treatment for cancer in childhood: modification by genetic factors, radiotherapy and chemotherapy. Int J Cancer 78(3):269鈥?75PubMed CrossRef
    11.Bondy ML et al (2001) Gamma-radiation sensitivity and risk of glioma. J Natl Cancer Inst 93(20):1553鈥?557PubMed CrossRef
    12.Neglia JP et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98(21):1528鈥?537PubMed CrossRef
    13.van Gent DC, Hoeijmakers HJ, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Genet 2:196鈥?06CrossRef
    14.Liu Y et al (2007) Tagging SNPs in non-homologous end-joining pathway genes and risk of glioma. Carcinogenesis 28(9):1906鈥?913PubMed CrossRef
    15.Liu Y et al (2008) Polymorphisms of LIG4 and XRCC4 involved in the NHEJ pathway interact to modify risk of glioma. Hum Mutat 29(3):381鈥?89PubMed CrossRef
    16.Zhou K et al (2009) XRCC3 haplotypes and risk of gliomas in a Chinese population: a hospital-based case-control study. Int J Cancer 124(12):2948鈥?953PubMed CrossRef
    17.Wood RD et al (2001) Human DNA repair genes. Science 291(5507):1284鈥?289PubMed CrossRef
    18.Wang P et al (2006) SNP Function Portal: a web database for exploring the function implication of SNP alleles. Bioinformatics 22(14):e523鈥揺529PubMed CrossRef
    19.Wu X et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78(3):464鈥?79PubMedCentral PubMed CrossRef
    20.Goode EL et al (2002) Effect of germ-line genetic variation on breast cancer survival in a population-based study. Cancer Res 62(11):3052鈥?057PubMed
    21.Annika A et al (2005) Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 117:611鈥?18CrossRef
    22.Lu M et al (2009) Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer 9:124PubMedCentral PubMed CrossRef
    23.Yao F et al (2013) Association between the NBS1 Glu185Gln polymorphism and breast cancer risk: a meta-analysis. Tumour Biol 34(2):1255鈥?262PubMed CrossRef
    24.Thomas J et al (2005) DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett 217:17鈥?4CrossRef
    25.Paz YMC et al (2010) Relationship of an hRAD54 gene polymorphism (2290 C/T) in an Ecuadorian population with chronic myelogenous leukemia. Genet Mol Biol 33(4):646鈥?49CrossRef
    26.Kristina A, Camp NJ (2005) Characterization of the linkage disequilibrium structure and identification of tagging-SNPs in five DNA repair genes. BMC Cancer 5:99CrossRef
    27.Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716鈥?23CrossRef
    28.Ritchie MD et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69(1):138鈥?47PubMedCentral PubMed CrossRef
    29.Moore JH, Williams SM (2002) New strategies for identifying gene-gene interactions in hypertension. Ann Med 34(2):88鈥?5PubMed CrossRef
    30.Cho YM et al (2004) Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia 47(3):549鈥?54PubMed CrossRef
    31.Tsai CT et al (2004) Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation 109(13):1640鈥?646PubMed CrossRef
    32.Ma DQ et al (2005) Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77(3):377鈥?88PubMedCentral PubMed CrossRef
    33.Kobayashi J (2004) Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. J Radiat Res 45(4):473鈥?78PubMed CrossRef
    34.Wang Y et al (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14(8):927鈥?39PubMedCentral PubMed
    35.Trujillo KM et al (1998) Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 273(34):21447鈥?1450PubMed CrossRef
    36.Fernet M et al (2005) Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet 14(2):307鈥?18PubMed CrossRef
    37.Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584(17):3682鈥?695PubMedCentral PubMed CrossRef
    38.Zhu XD et al (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25(3):347鈥?52PubMed CrossRef
    39.Solinger JA, Kiianitsa K, Heyer WD (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10(5):1175鈥?188PubMed CrossRef
  • 作者单位:Haishi Zhang (1)
    Yanhong Liu (2)
    Keke Zhou (1)
    Chengcheng Zhou (1)
    Renke Zhou (2)
    Chunxia Cheng (2) (3)
    Qingyi Wei (4)
    Daru Lu (5)
    Liangfu Zhou (1) (6)

    1. Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200433, China
    2. Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
    3. Department of Obstetrics聽and聽Gynecology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
    4. Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
    5. State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
    6. Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
  • 出版者:Springer Netherlands
  • ISSN:1573-7373
文摘
Accumulative epidemiological evidence suggests that single nucleotide polymorphisms (SNPs) in genes involved in homologous recombination (HR) DNA repair pathway play an important role in glioma susceptibility. However, the effects of such SNPs on glioma risk remain unclear. We used a used a candidate pathway-based approach to elucidate the relationship between glioma risk and 12 putative functional SNPs in genes involved in the HR pathway. Genotyping was conducted on 771 histologically-confirmed glioma patients and 752 cancer-free controls from the Chinese Han population. Odds ratios (OR) were calculated both for each SNP individually and for grouped analyses, examining the effects of the numbers of adverse alleles on glioma risk, and evaluated their potential gene鈥揼ene interactions using the multifactor dimensionality reduction (MDR). In the single-locus analysis, two variants, the NBS1 rs1805794 (OR 1.42, 95 % CI 1.15鈥?.76, P = 0.001), and RAD54L rs1048771 (OR 1.61, 95 % CI 1.17鈥?.22, P = 0.002) were significantly associated with glioma risk. When we examined the joint effects of the risk-conferring alleles of these three SNPs, we found a significant trend indicating that the risk increases as the number of adverse alleles increase (P = 0.005). Moreover, the MDR analysis suggested a significant three-locus interaction model involving NBS1 rs1805794, MRE11 rs10831234, and ATM rs227062. These results suggested that these variants of the genes involved in the HR pathway may contribute to glioma susceptibility. Keywords Glioma Homologous recombination pathway Functional polymorphism Susceptibility

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700