Synergistic effects of F and Fe in co-doped TiO2 nanoparticles
详细信息    查看全文
  • 作者:Yufei Zhang ; Huiyuan Shen ; Yanhua Liu
  • 关键词:Cooperation of F and Fe ; Co ; doped TiO2 ; Optical response ; Photocatalytic activity ; Density functional theory ; Modeling and simulation
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 全文大小:2,540 KB
  • 参考文献:Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. doi:10.​1126/​science.​1061051 CrossRef
    Ashkarran AA, Hamidinezhad H, Haddadi H, Mahmoudi M (2014) Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl Surf Sci 301:338–345. doi:10.​1016/​j.​apsusc.​2014.​02.​074 CrossRef
    Burdett JK, Hughbanks T, Miller GJ, Richardson JW Jr, Smith JV (1987) Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc 109:3639–3646. doi:10.​1021/​ja00246a021 CrossRef
    Cai JH, Ye YJ, Huang JW, Yu HC, Ji LN (2012) Synthesis, characterization and visible-light photocatalytic activity of TiO2-SiO2 composite modified with zinc porphyrins. J Sol-Gel Sci Technol 62:432–440. doi:10.​1007/​s10971-012-2746-2 CrossRef
    Choi WY, Termin A, Hoffmann MR (1994) The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-Carrier recombination dynamics. J Phys Chem 98:13669–13679. doi:10.​1021/​j100102a038 CrossRef
    Demeestere K, Dewulf J, Witte BD, Beeldensb A, Langenhove HV (2008) Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build Environ 43:406–414. doi:10.​1016/​j.​buildenv.​2007.​01.​16 CrossRef
    Galenda A, Crociani L, El Habra N, Favaro M, Natile MM, Rossetto G (2014) Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2. Appl Surf Sci 314:919–930. doi:10.​1016/​j.​apsusc.​2014.​06.​175 CrossRef
    Guo MZ, Ling TC, Poon CS (2012) TiO2-based self-compacting glass mortar: comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. Build Environ 53:1–6. doi:10.​1016/​j.​buildenv.​2011.​12.​022 CrossRef
    Hassan ME, Cong LC, Liu GL, Zhu DW, Cai JB (2014) Synthesis and characterization of C-doped TiO2 thin films for visible light induced photocatalytic degradation of methyl orange. Appl Surf Sci 294:89–94. doi:10.​1016/​j.​apsusc.​2013.​12.​069 CrossRef
    He ZL, Que WX, Chen J, Yin XT, He YC, Ren JB (2012) Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis. ACS Appl Mater Interfaces 4:6816–6826. doi:10.​1021/​am3019965 CrossRef
    He PT, Tao J, Huang XL, Xue JJ (2013) Preparation and photocatalytic antibacterial property of nitrogen doped TiO2 nanoparticles. J Sol-Gel Sci Technol 68:213–218. doi:10.​1007/​s10971-013-3154-y CrossRef
    Huang WP, Tang XH, Felner I, Koltypin Y, Gedanken A (2002) Preparation and characterization of FexOy-TiO2 via sonochemical synthesis. Mater Res Bull 37:1721–1735. doi:10.​1016/​S0025-5408(02)00821-8 CrossRef
    Hussain ST, Siddiqa A, Siddiq M, Ali S (2011) Iron-doped titanium dioxide nanotubes: a study of electrical, optical, and magnetic properties. J Nanopart Res 13:6517–6525. doi:10.​1007/​s11051-011-0556-z CrossRef
    Khan M, Xu JN, Chen N, Cao WB, Asadullah Usman Z, Khan DF (2013) Effect of Ag doping concentration on the electronic and optical properties of anatase TiO2: a DFT-based theoretical study. Res Chem Intermed 39:1633–1644. doi:10.​1007/​s11164-012-0897-y CrossRef
    Kolarik B, Wargocki P, Skorek-Osikowska A, Wisthaler A (2010) The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods. Build Environ 45:1434–1440. doi:10.​1016/​j.​buildenv.​2009.​12.​006 CrossRef
    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B: Environ 49(1):1–14. doi:10.​1016/​j.​apcatb.​2003.​11.​010 CrossRef
    Kumbhar A, Chumanov G (2005) Synthesis of iron (Ш)-doped titania nanoparticles and its application for photodegradation of sulforhodamine-B pollutant. J Nanopart Res 7:489–498. doi:10.​1007/​s11051-005-7529-z CrossRef
    Lazaro-Navas S, Prashar S, Fajardo M, Gomez-Ruiz S (2015) Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium-fluorine-doped titanium oxide nanoparticles. J Nanopart Res 17:94–107. doi:10.​1007/​s11051-015-2902-z CrossRef
    Lin F, Jiang DM, Ma XM (2009) The effect of milling atmospheres on photocatalytic property of Fe-doped TiO2 synthesized by mechanical alloying. J Alloys Compd 470:375–378. doi:10.​1016/​j.​jallcom.​2008.​02.​067 CrossRef
    Lin YH, Chou SH, Chu H (2014) A kinetic study for the degradation of 1,2-dichloroethane by S-doped TiO2 under visible light. J Nanopart Res 16:2539–2550. doi:10.​1007/​s11051-014-2539-3 CrossRef
    Liu ZQ, Wang YC, Chu W, Li ZH, Ge CC (2010) Characteristics of doped TiO2 photocatalysts for the degradation of methylene blue waste water under visible light. J Alloys Compd 501:54–59. doi:10.​1016/​j.​jallcom.​2010.​04.​027 CrossRef
    Liu Y, Xu C, Feng ZD (2014) Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method. Appl Sur Sci 314:392–399. doi:10.​1016/​j.​apsusc.​2014.​07.​042 CrossRef
    Liu JF, Li HY, Zong LL, Li QY, Wang XD, Zhang M, Yang JJ (2015) Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles. J Nanopart Res 17:114–121. doi:10.​1007/​s11051-015-2916-6 CrossRef
    Lu DZ, Fang PF, Liu Y, Liu Z, Liu XZ, Gao YP, Chen FT, Niu F (2014) A facile one-pot synthesis of gadolinium doped TiO2-based nanosheets with efficient visible light-driven photocatalytic performance. J Nanopart Res 16:2636–2647. doi:10.​1007/​s11051-014-2636-3 CrossRef
    Lv Y, Fu ZP, Yang BF, Xu J, Wu M, Zhu CQ, Zhao YX (2011) Preparation N-F-codoped TiO2 nanorod array by liquid phase deposition as visible light photocatalyst. Mater Res Bull 46:361–365. doi:10.​1016/​j.​materresbull.​2010.​12.​011 CrossRef
    Ma YF, Zhang JL, Tian BZ, Chen F, Bao SY, Anpo M (2012) Synthesis of visible light-driven Eu, N co-doped TiO2 and the mechanism of the degradation of salicylic acid. Res Chem Intermed 38:1947–1960. doi:10.​1007/​s11164-012-0516-y CrossRef
    Martinez T, Bertron A, Ringot E, Escadeillas G (2011) Degradation of NO using photocatalytic coatings applied to different substrates. Build Environ 46:1808–1816. doi:10.​1016/​j.​buildenv.​2011.​03.​001 CrossRef
    Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2013) Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J Nanopart Res 15:1669–1686. doi:10.​1007/​s11051-013-1669-3 CrossRef
    Nishikiori H, Sato T, Kubota S, Tanaka N, Shimizu Y, Fujii T (2012) Preparation of Cu-doped TiO2 via refluxing of alkoxide solution and its photocatalytic properties. Res Chem Intermed 38:595–613. doi:10.​1007/​s11164-011-0374-z CrossRef
    Pan JH, Cai ZY, Yu Y, Zhao XS (2011) Controllable synthesis of mesoporous F-TiO2 spheres for effective photocatalysis. J Mater Chem 21:11430–11438. doi:10.​1039/​c1jm11326g CrossRef
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.​1103/​PhysRevLett.​77.​3865 CrossRef
    Ramirez AM, Demeestere K, Belie ND, Mäntylä T, Levänen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build Environ 45:832–838. doi:10.​1016/​j.​buildenv.​2009.​09.​003 CrossRef
    Ruggieri F, Antonio D, Archivio A, Fanelli M, santucci S (2011) Photocatalytic degradation of linuron in aqueous suspensions of TiO2. RSC Adv 1(4):611–618. doi:10.​1039/​c1ra00133g CrossRef
    Ruggieri F, Di Camillo D, Maccarone L, Santucci S, Lozzi L (2013) Electrospun Cu−, W− and Fe-doped TiO2 nanofibres for photocatalytic degradation for rhodamine 6G. J Nanopart Res 15(10):1982–1992. doi:10.​1007/​s11051-013-1982-x CrossRef
    Sawunyama P, Yasumori A, Okada K (1998) The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process. Mater Res Bull 33(5):795–801. doi:10.​1016/​S0025-5408(98)00019-1 CrossRef
    Selvaraj A, Sivakumar S, Ramasamy AK, Balasubramanian V (2013) Photocatalytci degradation of triazine dyes over N-doped TiO2 in solar radiation. Res Chem Intermed 39(6):2287–2302. doi:10.​1007/​s11164-012-0756-x CrossRef
    Senna M, Sepelak V, Shi JM, Bauer B, Feldhoff A, Laporte V, Becker KD (2012) Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE. J Solid State Chem 187:51–57. doi:10.​1016/​j.​jssc.​2011.​12.​036 CrossRef
    Shi XL, Qin HB, Yang XY, Zhang QX (2012) Synthesis and characterization of F-N-W-codoped TiO2 photocatalyst with enhanced visible light response. Mater Res Bull 47:4347–4352. doi:10.​1016/​j.​materresbull.​2012.​09.​006 CrossRef
    Song HB, Zhou GW, Wang CF, Jiang XJ, Wu CC, Li TD (2013) Synthesis and photocatalytic activity of nanocrystalline TiO2 co-doped with nitrogen and cobalt (Π). Res Chem Intermed 39:747–758. doi:10.​1007/​s11164-012-0594-x CrossRef
    Sung M, Kato S, Kawanami F, Sudo M (2010) Evaluation of an air-cleaning unit having photocatalytic sheets to remove acetaldehyde from indoor air. Build Environ 45:2002–2007. doi:10.​1016/​j.​buildenv.​2010.​03.​007 CrossRef
    Wellia DV, Xu QC, Sk MA, Lim KH, Lim TM, Tan TTY (2011) Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Catal A Gen 401:98–105. doi:10.​1016/​j.​apcata.​2011.​05.​003 CrossRef
    Xu QC, Wellia DV, Sk MA, Lim KG, Loo JSC, Liao DW, Amal R, Tan TTY (2010) Transparent visible light activated C-N-F-codoped TiO2 films for self-cleaning applications. J Photoch Photobio A 210:181–187. doi:10.​1016/​j.​jphotochem.​2009.​12.​017 CrossRef
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449. doi:10.​1016/​j.​apsusc.​2007.​09.​063 CrossRef
    Yang HM, Zhang XC (2009) Synthesis, characterization and computational simulation of visible-light irradiated fluorine-doped titanium oxide thin films. J Mater Chem 19:6907–6914. doi:10.​1039/​b911709a CrossRef
    Yang F, Yang HM, Tian BZ, Zhang JL, He DN (2013) Preparation of an Mo and C co-doped TiO2 catalyst by a calcination-hydrothermal method, and degradation of rhodamine B in visible light. Res Chem Intermed 39:1685–1699. doi:10.​1007/​s11164-012-0902-5 CrossRef
    Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of f− doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816. doi:10.​1021/​cm020027c CrossRef
    Yu CL, Shu Q, Zhang CX, Xie ZP, Fan QZ (2012) A sonochemical route to fabricate the novel porous F, Ce-codoped TiO2 photocatalyst with efficient photocatalytic performance. J Porous Mater 19:903–911. doi:10.​1007/​s10934-011-9548-8 CrossRef
    Zhang YH, Lv FZ, Wu T, Yu L, Zhang R, Shen B, Meng XH, Ye ZF, Chu PK (2011) F and Fe co-doped TiO2 with enhanced visible light photocatalytic activity. J Sol–Gel Sci Technol 59:387–391. doi:10.​1007/​s10971-011-2449-0 CrossRef
    Zhang PL, Yin S, Sekino T, Lee SW, Sato T (2013) Nb and N co-doped TiO2 for a high-performance deNOx photocatalyst under visible LED light irradiation. Res Chem Intermed 39:1509–1515. doi:10.​1007/​s11164-012-0615-9 CrossRef
    Zhang K, Wang XD, Guo XL, He TO, Feng YM (2014) Preparation of highly visible light active Fe-N co-doped mesoporous TiO2 photocatalyst by fast sol-gel method. J Nanopart Res 16:2246–2254. doi:10.​1007/​s11051-014-2246-0 CrossRef
    Zhang YF, Shen HY, Liu YH (2015) Cooperation between N and Fe in co-doped TiO2 photocatalyst. Res Chem Intermed. doi:10.​1007/​s11164-015-2050-1
    Zhao J, Yang XD (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38:645–654. doi:10.​1016/​s0360-1323(02)00212-3 CrossRef
    Zhou JK, Lv L, Yu JQ, Li HL, Guo PZ, Sun H, Zhao XS (2008) Synthesis of self-organized polycrystalline f-doped TiO2 hollow microspheres and their photocatalytic activity under visible light. J Phys Chem C 112:5316–5321. doi:10.​1021/​jp709615x CrossRef
  • 作者单位:Yufei Zhang (1)
    Huiyuan Shen (1)
    Yanhua Liu (1)

    1. Department of Building Environment and Services Engineering, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
TiO2 photocatalysts co-doped with F and Fe were synthesized by a sol–gel method. Synergistic effects of F and Fe in the co-doped TiO2 were verified by NH3 decomposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–Vis) absorption spectroscopy, and was analyzed by the simulation based on the density functional theory (DFT). The results from NH3 decomposition confirmed that the cooperation of F and Fe broadened the optical response of TiO2 to visible light region and also enhanced the photocatalytic activity of TiO2 under ultraviolet light. XRD patterns, SEM and HRTEM images showed that the co-doped samples were nanometric anatase with an average particle size of 25 nm. Co-doping with F and Fe inhibited the grain growth of TiO2 from anatase to rutile and resulted in a larger lattice defect. XPS analysis exhibited that the doped F and Fe atoms were into the TiO2 lattice. UV–Vis absorption spectra showed that its optical absorption edge was moved up to approximately 617 nm and its ultraviolet absorption was also enhanced. The DFT results indicated that the cooperation of Fe 3d and O 2p orbits narrowed the band gap of TiO2 and F 2p orbit widened the upper valence bands. The synergistic electron density around F and Fe in co-doped TiO2 was capable to enhance the photo-chemical stability of TiO2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700