The role of interactions between bacterial chaperone, aspartate aminotransferase, and viral protein during virus infection in high temperature environment: the interactions between bacterium and virus proteins
详细信息    查看全文
  • 作者:Yanjiang Chen (1)
    Dahai Wei (2)
    Yiqian Wang (2) (3)
    Xiaobo Zhang (1)
  • 关键词:Protein interaction ; Thermophile ; Bacteriophage
  • 刊名:BMC Microbiology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:643KB
  • 参考文献:1. Roucourt B, Lavigne R: The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. / Environ Microbiol 2009,11(11):2789-805. CrossRef
    2. Guttman B, Raya R, Kutter E: / Basic phage biology. Boca Raton, FL, USA: CRP Press; 2005.
    3. Kutter E, Guttman B, Carlson K: / The transition from host to phage metabolism after T4 infection. Washington, DC, USA: American Society for Microbiology Press; 1994.
    4. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W: Bacteriophage T4 genome. / Microbiol Mol Biol Rev 2003,67(1):86-56. table of contents CrossRef
    5. Wei D, Zhang X: Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature. / J Virol 2010,84(5):2365-373. CrossRef
    6. Li H, Ji X, Zhou Z, Wang Y, Zhang X: Thermus thermophilus proteins that are differentially expressed in response to growth temperature and their implication in thermoadaptation. / J Proteome Res 2010,9(2):855-64. CrossRef
    7. Ang D, Keppel F, Klein G, Richardson A, Georgopoulos C: Genetic analysis of bacteriophage-encoded cochaperonins. / Annu Rev Genet 2000, 34:439-56. CrossRef
    8. Tyagi NK, Fenton WA, Horwich AL: GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. / Proc Natl Acad Sci USA 2009,106(48):20264-0269. CrossRef
    9. Kovacs E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA: Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity. / J Mol Biol 2010,396(5):1271-283. CrossRef
    10. Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL: Structure and function in GroEL-mediated protein folding. / Annu Rev Biochem 1998, 67:581-08. CrossRef
    11. Endo A, Kurusu Y: Identification of in vivo substrates of the chaperonin GroEL from Bacillus subtilis. / Biosci Biotechnol Biochem 2007,71(4):1073-077. CrossRef
    12. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU: Identification of in vivo substrates of the chaperonin GroEL. / Nature 1999,402(6758):147-54. CrossRef
    13. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M: Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. / Cell 2005,122(2):209-20. CrossRef
    14. Fayet O, Ziegelhoffer T, Georgopoulos C: The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. / J Bacteriol 1989,171(3):1379-385.
    15. Ivic A, Olden D, Wallington EJ, Lund PA: Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37 degrees C but not at 43 degrees C. / Gene 1997,194(1):1-. CrossRef
    16. King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A: Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. / FASEB J 1996,10(1):57-6.
    17. Lee SG, Hong SP, Song JJ, Kim SJ, Kwak MS, Sung MH: Functional and structural characterization of thermostable D-amino acid aminotransferases from Geobacillus spp. / Appl Environ Microbiol 2006,72(2):1588-594. CrossRef
    18. Belitsky BR: / Biosynthesis of amino acids of the glutamate and aspartate families, alanine, and polyamines. Washington, DC, USA: American Society for Microbiology Press; 2002.
    19. Deu E, Koch KA, Kirsch JF: The role of the conserved Lys68*:Glu265 intersubunit salt bridge in aspartate aminotransferase kinetics: multiple forced covariant amino acid substitutions in natural variants. / Protein Sci 2002,11(5):1062-073. CrossRef
    20. Torre F, Santis LD, Suarez MF, Crespillo R, Canovas FM: Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. / Plant J 2006,46(3):414-25. CrossRef
    21. Miesak BH, Coruzzi GM: Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. / Plant Physiol 2002,129(2):650-60. CrossRef
    22. Wu HJ, Yang Y, Wang S, Qiao JQ, Xia YF, Wang Y, Wang WD, Gao SF, Liu J, Xue PQ: Cloning, expression and characterization of a new aspartate aminotransferase from Bacillus subtilis B3. / FEBS J 2011,278(8):1345-357. CrossRef
    23. Liu B, Wu S, Song Q, Zhang X, Xie L: Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. / Curr Microbiol 2006,53(2):163-66. CrossRef
    24. Wang Y, Zhang X: Genome analysis of deep-sea thermophilic phage D6E. / Appl Environ Microbiol 2010,76(23):7861-866. CrossRef
    25. Liu B, Zhang X: Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions. / Appl Microbiol Biotechnol 2008,80(4):697-07. CrossRef
    26. Harlow E, Lane D: / Using antibodies: a laboratory manual. NY: Cold Spring Harbor Laboratory; 1999.
    27. Naryshkina T, Liu J, Florens L, Swanson SK, Pavlov AR, Pavlova NV, Inman R, Minakhin L, Kozyavkin SA, Washburn M: Thermus thermophilus bacteriophage phiYS40 genome and proteomic characterization of virions. / J Mol Biol 2006,364(4):667-77. CrossRef
    28. Fuhrman JA: Marine viruses and their biogeochemical and ecological effects. / Nature 1999,399(6736):541-48. CrossRef
    29. Nazina TN, Sokolova D, Grigoryan AA, Shestakova NM, Mikhailova EM, Poltaraus AB, Tourova TP, Lysenko AM, Osipov GA, Belyaev SS: Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. / Syst Appl Microbiol 2005,28(1):43-3. CrossRef
    30. Suttle CA: Viruses in the sea. / Nature 2005,437(7057):356-61. CrossRef
    31. Suttle CA: Marine viruses–major players in the global ecosystem. / Nature reviews 2007,5(10):801-12. CrossRef
    32. Anbazhagan V, Sankhala RS, Singh BP, Swamy MJ: Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes. / PLoS One 2011,6(10):e25993. CrossRef
    33. Falconer RJ, Collins BM: Survey of the year 2009: applications of isothermal titration calorimetry. / J Mol Recognit 2010,24(1):1-6. CrossRef
    34. Ladbury JE: Calorimetry as a tool for understanding biomolecular interactions and an aid to drug design. / Biochem Soc Trans 2010,38(4):888-93. CrossRef
    35. Lund LN, Christensen T, Toone E, Houen G, Staby A, St Hilaire PM: Exploring variation in binding of Protein A and Protein G to immunoglobulin type G by isothermal titration calorimetry. / J Mol Recognit 2011,24(6):945-52. CrossRef
    36. Yano T, Oue S, Kagamiyama H: Directed evolution of an aspartate aminotransferase with new substrate specificities. / Proc Natl Acad Sci USA 1998,95(10):5511-515. CrossRef
    37. Richardson A, Landry SJ, Georgopoulos C: The ins and outs of a molecular chaperone machine. / Trends Biochem Sci 1998,23(4):138-43. CrossRef
  • 作者单位:Yanjiang Chen (1)
    Dahai Wei (2)
    Yiqian Wang (2) (3)
    Xiaobo Zhang (1)

    1. Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, 310058, The People’s Republic of China
    2. Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, P.R. China
    3. State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
  • ISSN:1471-2180
文摘
Background The life cycle of a bacteriophage has tightly programmed steps to help virus infect its host through the interactions between the bacteriophage and its host proteins. However, bacteriophage–host protein interactions in high temperature environment remain poorly understood. To address this issue, the protein interaction between the thermophilic bacteriophage GVE2 and its host thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal vent was characterized. Results This investigation showed that the host’s aspartate aminotransferase (AST), chaperone GroEL, and viral capsid protein VP371 formed a linearly interacted complex. The results indicated that the VP371-GroEL-AST complex were up-regulated and co-localized in the GVE2 infection of Geobacillus sp. E263. Conclusions As reported, the VP371 is a capsid protein of GVE2 and the host AST is essential for the GVE2 infection. Therefore, our study revealed that the phage could use the anti-stress system of its host to protect the virus reproduction in a high-temperature environment for the first time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700