Acylcarnitines participate in developmental processes associated to lipid metabolism in plants
详细信息    查看全文
  • 作者:Phuong-Jean Nguyen ; Sonia Rippa ; Yannick Rossez ; Yolande Perrin
  • 关键词:Acyl ; CoA ; Arabidopsis ; Fatty acid transport ; Lipid trafficking ; Plant development ; Plant metabolism
  • 刊名:Planta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:243
  • 期:4
  • 页码:1011-1022
  • 全文大小:678 KB
  • 参考文献:Abo-Hashema KA, Cake MH, Power GW, Clarke D (1999) Evidence for triacylglycerol synthesis in the lumen of microsomes via a lipolysis-esterification pathway involving carnitine acyltransferases. J Biol Chem 274:35577–35582CrossRef PubMed
    Antonenkov VD, Hiltunen JK (2012) Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta 1822:1374–1386CrossRef PubMed
    Bach L, Gissot L, Marion J, Tellier F, Moreau P, Satiat-Jeunemaître B, Palauqui JC, Napier JA, Faure JD (2011) Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J Cell Sci 124:3223–3234CrossRef PubMed
    Bates PD, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol 16:358–364CrossRef PubMed
    Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91CrossRef PubMed
    Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033CrossRef PubMed PubMedCentral
    Bonaventure G, Bao X, Ohlrogge J, Pollard M (2004) Metabolic responses to the reduction in palmitate caused by disruption of the FATB gene in Arabidopsis. Plant Physiol 135:1269–1279CrossRef PubMed PubMedCentral
    Bourdin B, Adenier H, Perrin Y (2007) Carnitine is associated with fatty acid metabolism in plants. Plant Physiol Biochem 45:926–931CrossRef PubMed
    Burgess N, Thomas DR (1986) Carnitine acyltransferase in pea cotyledon mitochondria. Planta 167:58–65CrossRef PubMed
    Cruz-Ramírez A, López-Bucio J, Ramírez-Pimentel G, Zurita-Silva A, Sánchez-Calderon L, Ramírez-Chávez E, González-Ortega E, Herrera-Estrella LL (2004) The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity. Plant Cell 16:2020–2034CrossRef PubMed PubMedCentral
    Elgersma Y, van Roermund CW, Wanders RJ, Tabak HF (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J 14:3472–3479PubMed PubMedCentral
    Ewald R, Hoffmann C, Florian A, Neuhaus E, Fernie AR, Bauwe H (2014) Lipoate-protein ligase and octanoyltransferase are essential for protein lipoylation in mitochondria of Arabidopsis. Plant Physiol 165:978–990CrossRef PubMed PubMedCentral
    Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, Graham I, Baker A, Holdsworth M (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922CrossRef PubMed PubMedCentral
    Fraenkel G (1953) Studies on the distribution of vitamin BT (carnitine). Biol Bull 104:359–371CrossRef
    Fraser F, Zammit VA (1999) Submitochondrial and subcellular distributions of the carnitine-acylcarnitine carrier. FEBS Lett 445:41–44CrossRef PubMed
    Gerbling H, Gerhardt B (1988) Carnitine-acyltransferase activity of mitochondria from mung-bean hypocotyls. Planta 174:90–93CrossRef PubMed
    Gooding JM, Shayeghi M, Saggerson ED (2004) Membrane transport of fatty acylcarnitine and free l -carnitine by rat liver microsomes. Eur J Biochem 271:954–961CrossRef PubMed
    Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41:156–181CrossRef PubMed
    Gutierrez L, Mongelard G, Floková K, Pacurar DI, Novák O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527CrossRef PubMed PubMedCentral
    Kim S, Yamaoka Y, Ono H, Kim H, Shim D, Maeshima M, Martinoia E, Cahoon EB, Nishida I, Lee Y (2013) AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci USA 110:773–778CrossRef PubMed PubMedCentral
    Koo AJ, Ohlrogge JB, Pollard M (2004) On the export of fatty acids from the chloroplast. J Biol Chem 279:16101–16110CrossRef PubMed
    Kunst L, Browse J, Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85:4143–4147CrossRef PubMed PubMedCentral
    Li N, Gügel IL, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K (2015) FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol 13:e1002053CrossRef PubMed PubMedCentral
    Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161CrossRef PubMed PubMedCentral
    Masterson C, Wood C (2000) Pea chloroplast carnitine acetyltransferase. Proc Biol Sci 267:1–6CrossRef PubMed PubMedCentral
    Masterson C, Wood C (2009) Influence of mitochondrial beta-oxidation on early pea seedling development. New Phytol 181:832–842CrossRef PubMed
    McLaren I, Wood C, Jalil MNH, Yong BCS, Thomas DR (1985) Carnitine acyltransferases in chloroplasts of Pisum sativum L. Planta 163:197–200CrossRef PubMed
    McNeil PH, Thomas DR (1975) Carnitine content of pea seedling cotyledons. Phytochemistry 14:2335–2336CrossRef
    McNeil PH, Thomas DR (1976) The effect of carnitine on palmitate oxidation by pea cotyledon mitochondria. J Exp Bot 27:1163–1179CrossRef
    Nameth B, Dinka SJ, Chatfield SP, Morris A, English J, Lewis D, Oro R, Raizada MN (2013) The shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial hours after injury and is modulated by a complex genetic network of light signaling. Plant, Cell Environ 36:68–86CrossRef
    Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970CrossRef PubMed PubMedCentral
    Panter RA, Mudd JB (1969) Carnitine levels in some higher plants. FEBS Lett 5:169–170CrossRef PubMed
    Ramsay RR, Zammit VA (2004) Carnitine acyltransferases and their influence on CoA pools in health and disease. Mol Aspects Med 25:475–493CrossRef PubMed
    Ramsay RR, Gandour RD, Van Der Leij FR (2001) Molecular enzymology of carnitine transfer and transport. Biochem Biophys Acta Protein Struct Mol Enzymol 1546:21–43CrossRef
    Running MP (2014) The role of lipid post-translational modification in plant developmental processes. Front Plant Sci 5:50CrossRef PubMed PubMedCentral
    Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34CrossRef PubMed
    Schwabedissen-Gerbling H, Gerhardt B (1995) Purification and characterization of carnitine acyltransferase from higher plant mitochondria. Phytochemistry 39:36–43CrossRef
    Shockey JM, Fulda MS, Browse J (2002) Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129:1710–1722CrossRef PubMed PubMedCentral
    Sierra AY, Gratacós E, Carrasco P, Clotet J, Ureña J, Serra D, Asins G, Hegardt FG, Casals N (2008) CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J Biol Chem 283:6878–6885CrossRef PubMed
    Steiber A, Kerner J, Hoppel CL (2004) Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 25:455–473CrossRef PubMed
    Stephens FB, Constantin-Teodosiu D, Greenhaff PL (2007) New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol 581:431–444CrossRef PubMed PubMedCentral
    ter Veld F, Primassin S, Hoffmann L, Mayatepek E, Spiekerkoetter U (2009) Corresponding increase in long-chain acyl-CoA and acylcarnitine after exercise in muscle from VLCAD mice. J Lipid Res 50:1556–1562CrossRef PubMed PubMedCentral
    Thomas DR, Wood C (1986) The two β-oxidation sites in pea cotyledons carnitine palmitoyltransferase: location and function in pea mitochondria. Planta 168:261–266PubMed
    Tjellström H, Yang Z, Allen DK, Ohlrogge JB (2012) Rapid kinetic labeling of Arabidopsis cell suspension cultures: implications for models of lipid export from plastids. Plant Physiol 158:601–611CrossRef PubMed PubMedCentral
    van Roermund CW, Waterham HR, Ijlst L, Wanders RJ (2003) Fatty acid metabolism in Saccharomyces cerevisiae. Cell Mol Life Sci 60:1838–1851CrossRef PubMed
    Vrkoslav V, Cvačka J (2012) Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 1259:244–250CrossRef PubMed
    Wang Z, Benning C (2012) Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites. Biochem Soc Trans 40:457–463CrossRef PubMed
    Washington L, Cook GA, Mansbach CM 2nd (2003) Inhibition of carnitine palmitoyltransferase in the rat small intestine reduces export of triacylglycerol into the lymph. J Lipid Res 44:1395–1403CrossRef PubMed
    Wood C, Jalil MNH, Ariffin A, Yong BCS, Thomas DR (1983) Carnitine short-chain acyltransferases in pea mitochondria. Planta 158:175–178CrossRef PubMed
    Wood C, Jalil MNH, McLaren I, Yong BCS, Ariffin A, McNeil PH, Burgess N, Thomas DR (1984) Carnitine long-chain acyltransferase and oxidation of palmitate, palmitoyl CoA and palmitoylcarnitine by pea mitochondria preparations. Planta 161:255–260CrossRef PubMed
    Zammit VA, Ramsay RR, Bonomini M, Arduini A (2009) Carnitine, mitochondrial function and therapy. Adv Drug Deliv Rev 61:1353–1362CrossRef PubMed
    Zhao L, Katavic V, Li F, Haughn GW, Kunst L (2010) Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J 64:1048–1058CrossRef PubMed
  • 作者单位:Phuong-Jean Nguyen (1)
    Sonia Rippa (1)
    Yannick Rossez (1)
    Yolande Perrin (1)

    1. Génie Enzymatique et Cellulaire, FRE 3580 CNRS, Centre de recherche Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, CS 60319, 60203, Compiègne Cedex, France
  • 刊物主题:Plant Sciences; Agriculture; Ecology; Forestry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2048
文摘
Main conclusion Plant acylcarnitines are present during anabolic processes of lipid metabolism. Their low contents relatively to the corresponding acyl-CoAs suggest that they are associated to specific pools of activated fatty acids.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700