Optimal M-PAM Spread-Spectrum Data Embedding with Precoding
详细信息    查看全文
  • 作者:Ming Li ; Qian Liu ; Yanqing Guo ; Bo Wang
  • 关键词:Authentication ; Data embedding ; Data hiding ; Dirty paper coding ; Information hiding ; Spread ; spectrum embedding ; Tomlinson–Harashima precoding ; Watermarking
  • 刊名:Circuits, Systems, and Signal Processing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:35
  • 期:4
  • 页码:1333-1353
  • 全文大小:1,435 KB
  • 参考文献:1.A. Abrardo, M. Barni, A new watermarking scheme based on antipodal binary dirty paper coding. IEEE Trans. Inf. Forensics Secur. 9(6), 1380–1393 (2014)CrossRef
    2.C.B. Adsumilli, M.C.Q. Farias, S.K. Mitra, M. Carli, A robust error concealment technique using data hiding for image and video transmission over lossy channels. IEEE Trans. Circuits Syst. Video Technol. 15(11), 1394–1406 (2005)CrossRef
    3.M. Barni, F. Bartolini, A. De Rosa, A. Piva, A new decoder for the optimum recovery of nonadditive watermarks. IEEE Trans. Image Process. 10(8), 755–766 (2001)CrossRef
    4.M. Barni, F. Bartolini, A. De Rosa, A. Piva, Optimum decoding and detection of multiplicative watermarks. IEEE Trans. Signal Process. 51(5), 1118–1123 (2003)CrossRef
    5.H. Cao, A.C. Kot, On establishing edge adaptive grid for bilevel image data hiding. IEEE Trans. Inf. Forensics Secur. 8(9), 1508–1518 (2013)CrossRef
    6.M.H.M. Costa, Writing on dirty paper. IEEE Trans. Inf. Theory 29(3), 439–441 (1983)MathSciNet CrossRef MATH
    7.I.J. Cox, J. Kilian, F.T. Leighton, T. Shannon, Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRef
    8.X. Feng, H. Zhang, H.-C. Wu, Y. Wu, A new approach for optimal multiple watermarks injection. IEEE Signal Proc. Lett. 18(10), 575–578 (2011)CrossRef
    9.B. Feng, W. Lu, W. Sun, Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans. Inf. Forensics Secur. 10(2), 243–255 (2015)CrossRef
    10.J. Fridrich, Steganography in Digital Media, Principles, Algorithms, and Applications (Cambridge Univeristy Press, Cambridge, 2010)MATH
    11.M. Gkizeli, D.A. Pados, M.J. Medley, SINR, bit error rate, and Shannon capacity optimized spread-spectrum steganography, in Proceedings IEEE International Conference on Image Processing (ICIP), Singapore, Oct. 2004, pp. 1561–1564
    12.M. Gkizeli, D.A. Pados, M.J. Medley, Optimal signature design for spread-spectrum steganography. IEEE Trans. Image Process. 16(2), 391–405 (2007)MathSciNet CrossRef
    13.S. Glisic, B. Vucetic, Spread Spectrum CDMA Systems for Wireless Communications (Artech House, Norwood, MA, 1997)
    14.H. Harashima, H. Miyakawa, Matched-transmission technique for channels with intersymbol interference. IEEE Trans. Commun. 20(4), 774–780 (1972)CrossRef
    15.J. Hernandez, M. Amado, F. Pérez-González, DCT-domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE Trans. Image Process. 9(1), 55–68 (2000)CrossRef
    16.Y. Huang, C. Liu, S. Tang, S. Bai, Steganography integration into a low-bit rate speech codec. IEEE Trans. Inf. Forensics Secur. 7(6), 1865–1875 (2012)CrossRef
    17.M. Kutter, S. Winkler, A vision-based masking model for spreadspectrum image watermarking. IEEE Trans. Image Process. 11(1), 16–25 (2002)CrossRef
    18.E.Y. Lam, J.W. Goodman, A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000)CrossRef MATH
    19.M. Li, M. Kulhandjian, D.A. Pados, S.N. Batalama, M.J. Medley, J.D. Matyjas, On the extraction of spread-spectrum hidden data in digital media, in Proceedings on International Conference on Communications (ICC), Ottawa, Canada, June 2012, pp. 1046–1050
    20.M. Li, M. Kulhandjian, D.A. Pados, S.N. Batalama, M.J. Medley, Extracting spread-spectrum hidden data from digital media. IEEE Trans. Inf. Forensics Secur. 8(7), 1201–1210 (2013)CrossRef
    21.S.-C. Liu, W.-H. Tsai, Line-based cubism-like image—a new type of art image and its application to lossless data hiding. IEEE Trans. Inf. Forensics Secur. 7(5), 1448–1458 (2012)CrossRef
    22.H.S. Malvar, D.A. Florencio, Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Trans. Signal Process. 51(4), 898–905 (2003)MathSciNet CrossRef
    23.L.M. Marvel Jr, C.G. Boncelet, C.T. Retter, Spread spectrum image steganography. IEEE Trans. Image Process. 8, 1075–1083 (1999)CrossRef
    24.P. Moulin, A. Ivanović, The zero-rate spread-spectrum watermarking game. IEEE Trans. Signal Process. 51(4), 1098–1117 (2003)MathSciNet CrossRef
    25.S. Pereira, S. Voloshynovskiy, T. Pun, Optimized wavelet domain watermark embedding strategy using linear programming, in Proceedings on SPIE Wavelet Applications Conference, Orlando, FL, April 2000, vol. 4056, pp. 490–498
    26.C. Qiang, T.S. Huang, An additive approach to transform-domain information hiding and optimum detection structure. IEEE Trans. Multimed. 3(3), 273–284 (2001)CrossRef
    27.G. Schaefer, M. Stich, UCID–an uncompressed colour image database, in Proceedings of SPIE, Storage and Retrieval Methods and Applications for Multimedia, San Jose, CA, Jan. 2004, pp. 472–480
    28.M.D. Swanson, M. Kobayashi, A.H. Tewfik, Multimedia data-embedding and watermarking technologies. Proc. IEEE 86(6), 1064–1087 (1998)CrossRef
    29.Y. Tew, K. Wong, An overview of information hiding in H.264/AVC compressed video. IEEE Trans. Circuits Syst. Video Technol. 24(2), 305–319 (2014)CrossRef
    30.H. Tian, Y. Zhao, R. Ni, L. Qin, X. Li, LDFT-based watermarking resilient to local desynchronization attacks. IEEE Trans. Cybern. 43(6), 2190–2201 (2013)CrossRef
    31.M. Tomlinson, New automatic equalizer employing modulo arithmetic. Electron. Lett. 7(5), 138–139 (1971)CrossRef
    32.H.-W. Tseng, H.-S. Leng, High-payload block-based data hiding scheme using hybrid edge detector with minimal distortion. IET Image Process. 8(11), 647–654 (2014)CrossRef
    33. USC-SIPI Image Database. Available: http://​sipi.​usc.​edu/​database/​database.​cgi?​volume=​misc
    34.A. Valizadeh, Z.J. Wang, Correlation-and-bit-aware spread spectrum embedding for data hiding. IEEE Trans. Inf. Forensics Secur. 6(2), 267–282 (2011)CrossRef
    35.Y. Wang, P. Moulin, Perfectly secure steganography: capacity, error exponents, and code constructions. IEEE Trans. Inf. Theory 54(6), 2706–2722 (2008)MathSciNet CrossRef MATH
    36.L. Wei, D.A. Pados, S.N. Batalama, M.J. Medley, Sum-SINR/sum-capacity optimal multisignature spread-spectrum steganography, in Proceedings of SPIE, Mobile Multimedia/Image Processing, Security, and Applications Conference, SPIE Defense and Security Symposium, Orlando, FL, March 2008, vol. 6982, pp. 0D1–0D10
    37.X.G. Xia, C.G. Boncelet, G.R. Arce, A multiresolution watermark for digital images, in Proceedings IEEE International Conference on Image Processing (ICIP), Santa Barbara, CA, Oct. 1997, vol. 1, pp. 548–551
    38.Y. Yi, R. Li, F. Chen, A.X. Liu, Y. Lin, A digital watermarking approach to secure and precise range query processing in sensor networks, in Proceedings on IEEE INFOCOM, Turin, Italy, April 2013, pp. 1950–1958
    39.M. Zareian, H.R. Tohidypour, Robust quantisation index modulation-based approach for image watermarking. IET Image Process. 7(5), 432–441 (2013)CrossRef
  • 作者单位:Ming Li (1)
    Qian Liu (2)
    Yanqing Guo (1)
    Bo Wang (1)

    1. School of Information and Communication Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People’s Republic of China
    2. Department of Computer Science and Engineering, University of New York at Buffalo, Buffalo, NY, 14260, USA
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
  • 出版者:Birkh盲user Boston
  • ISSN:1531-5878
文摘
We consider M-level pulse amplitude modulation (M-PAM) spread-spectrum (SS) data embedding in transform domain host data. The process of data embedding can be viewed as delivering information through the channel including additive interference from host that is known to the embedder. We first utilize the knowledge of second-order statistics of host to design optimal carrier that maximizes the signal-to-interference-plus-noise ratio at the decoder end. Then, inspired by Tomlinson–Harashima precoding used in communication systems, a symbol-by-symbol precoding scheme is developed for M-PAM SS embedding to alleviate the impact of the interference which is explicitly known to embedder. For any given embedding carrier and host data, we aim at designing precoding algorithm to minimize the receiver bit error rate (BER) with any given host distortion budget, and conversely minimize the distortion at any target BER. Experimental studies demonstrate that the proposed precoded SS embedding approach can significantly improve BER performance over conventional SS embedding schemes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700