Fabrication and evaluation of physical properties and cytotoxicity of zein-based polyurethanes
详细信息    查看全文
  • 作者:Xinshen Du (1)
    Yinping Li (1)
    Xing Liu (1)
    Xiong Wang (2)
    Celine Huselstein (2)
    Yanteng Zhao (1)
    Peter R. Chang (3)
    Yun Chen (1)
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:25
  • 期:3
  • 页码:823-833
  • 全文大小:2,070 KB
  • 参考文献:1. Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crops Prod. 2001;13(3):171-2. CrossRef
    2. Ghanbarzadeh B, Oromiehie AR, Musavi M. Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films. Food Res Int. 2006;39(8):882-0. CrossRef
    3. Naushad Emmambux M, Stading M. In situ tensile deformation of zein films with plasticizers and filler materials. Food Hydrocoll. 2007;21(8):1245-5. CrossRef
    4. Wang Y, Su CP, Schulmerich M, Padua GW. Characterization of core–shell structures formed by zein. Food Hydrocoll. 2013;30(2):487-4. CrossRef
    5. Arcan I, Yemenicio?lu A. Development of flexible zein–wax composite and zein–fatty acid blend films for controlled release of lysozyme. Food Res Int. 2013;51(1):208-6. CrossRef
    6. Li Y, Yao C. Mineralization of hydroxyapatite crystallites on zein microspheres. Polym Compos. 2012;33(6):961-. CrossRef
    7. Wu F, Wei J, Liu C, O’Neill B, Ngothai Y. Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Compos B Eng. 2012;43(5):2192-. CrossRef
    8. Regier MC, Taylor JD, Borcyk T, Yang YQ, Pannier AK. Fabrication and characterization of DNA-loaded zein nanospheres. J Nanobiotechnol. 2012;10(1):44-7. CrossRef
    9. Hurtado-Lopez P, Murdan S. Formulation and characterisation of zein microspheres as delivery vehicles. J Drug Deliv Sci Technol. 2005;15(4):267-2.
    10. Wang HJ, Lin ZX, Liu XM, Sheng SY, Wang JY. Heparin-loaded zein microsphere film and hemocompatibility. J Control Release. 2005;105(1):120-1. CrossRef
    11. Dong J, Sun Q, Wang JY. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials. 2004;25(19):4691-. CrossRef
    12. Tillekeratne M, Easteal AJ. Modification of zein films by incorporation of poly(ethylene glycol)s. Polym Int. 2000;49(1):127-4. CrossRef
    13. Yoshino T, Isobe S, Maekawa T. Influence of preparation conditions on the physical properties of zein films. J Am Oil Chem Soc. 2002;79(4):345-. CrossRef
    14. Liu C, Chen Y, Wang X, Huang J, Chang PR, Anderson DP. Improvement in physical properties and cytocompatibility of zein by incorporation of pea protein isolate. J Mater Sci. 2010;45(24):6775-5. CrossRef
    15. Wu Q, Yoshino T, Sakabe H, Zhang H, Isobe S. Chemical modification of zein by bifunctional polycaprolactone (PCL). Polymer. 2003;44(14):3909-9. CrossRef
    16. Lawton JW. Zein: a history of processing and use. Cereal Chem. 2002;79(1):1-8. CrossRef
    17. Selling G, Sessa DJ. Multivalent carboxylic acids to modify the properties of zein. Ind Crops Prod. 2007;25(1):63-. CrossRef
    18. Sessa DJ, Cheng HN, Kim S, Selling GW, Biswas A. Zein-based polymers formed by modifications with isocyanates. Ind Crops Prod. 2013;43:106-3. CrossRef
    19. McBane JE, Sharifpoor S, Cai K, Labow RS, Santerre JP. Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials. 2011;32(26):6034-4.
    20. Guan J, Fujimoto KL, Wagner WR. Elastase-sensitive elastomeric scaffolds with variable anisotropy for soft tissue engineering. Pharm Res. 2008;25(10):2400-2. CrossRef
    21. Walinska K, Iwan A, Gorna K, Gogolewski S. The use of long-chain plant polyprenols as a means to modify the biological properties of new biodegradable polyurethane scaffolds for tissue engineering. A pilot study. J Mater Sci Mater Med. 2008;19(1):129-5. CrossRef
    22. Andrews KD, Hunt JA, Black RA. Technology of electrostatic spinning for the production of polyurethane tissue engineering scaffolds. Polym Int. 2008;57(2):203-0. CrossRef
    23. Jiang X, Wang K, Ding M, Li J, Tan H, Wang Z, Fu Q. Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering. J Mater Sci Mater Med. 2011;22(4):819-7. CrossRef
    24. Ozkaynak MU, Atalay-Oral C, Tantekin-Ersolmaz SB, Güner FS. Polyurethane films for wound dressing applications. Macromol Symp. 2005;228(1):177-4. CrossRef
    25. Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials. 2003;24(28):5163-1. CrossRef
    26. Obruca S, Marova I, Vojtova L. Biodegradation of polyether–polyol-based polyurethane elastomeric films: influence of partial replacement of polyether polyol by biopolymers of renewable origin. Environ Technol. 2011;32(9):1043-2. CrossRef
    27. Heijkants R, Van Calck RV, De Groot JH, Pennings AJ, Schouten AJ, Van Tienen TG, Veth RPH. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med. 2004;15(4):423-. CrossRef
    28. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med. 2011;39(4):774-2. CrossRef
    29. Emami SH, Orang F, Mahmoudi M, Rafienia M. A study of starch addition on burst effect and diameter of polyurethane microspheres containing theophylline. Polym Adv Technol. 2008;19(3):167-0. CrossRef
    30. Subirade M, Kelly I, Guéguen J, Pézolet M. Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films. Int J Biol Macromol. 1998;23:241-. CrossRef
    31. Benhardt H, Sears N, Touchet T, Cosgriff-Hernandez E. Synthesis of collagenase-sensitive polyureas for ligament tissue engineering. Macromol Biosci. 2011;11(8):1020-0. CrossRef
    32. He W, Hu ZJ, Xu A, Liu R, Yin HH, Wang JS, Wang SM. The preparation and performance of a new polyurethane vascular prosthesis. Cell Biochem Biophys. 2013;66:855-6. CrossRef
    33. Laurencin CT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials. 2005;26(36):7530-. CrossRef
    34. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93(2):716-3.
    35. Santos RL, Pithon MM, Pereira ARB, Romanos MTV. Evaluation of the cytotoxicity of polyurethane and non-latex orthodontic chain elastics. Materia-Rio de Janeiro. 2012;17(1):939-5. CrossRef
  • 作者单位:Xinshen Du (1)
    Yinping Li (1)
    Xing Liu (1)
    Xiong Wang (2)
    Celine Huselstein (2)
    Yanteng Zhao (1)
    Peter R. Chang (3)
    Yun Chen (1)

    1. Department of Biomedical Engineering, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
    2. Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS-Université de Lorraine, Biop?le, 54500, Vand?uvre-lès-Nancy, France
    3. Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
  • ISSN:1573-4838
文摘
Polyurethane prepolymer (PUP) was first synthesized from polycaprolactone diol and isophorone diisocyanate; and then a series of zein-based polyurethane (ZEPU) sheets was fabricated from PUP and zein (ZE) using a hot press and moulding process without addition of other additives. Effects of ZE content (WZE) on the structure and properties of the resultant ZEPU sheets were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analysis, tensile testing, and dissolubility testing in alcohol. The results indicated that cross-linking and grafting reactions occurred between ZE and PUP to form new polyurethane showing a higher thermal stability, flexibility, and alcohol-resistance than the neat ZE sheets. For example, the elongation at break of ZEPU with 50?% WZE was 211.2?%, which was 47 times higher than that of neat ZE sheet. ZE molecules acted as both cross-linkers and polymer fillers in ZEPU sheets. The cytotoxicity and cytocompatibility of ZEPU sheets were evaluated by cell culture in vitro. The ZEPU sheets showed non- or low-cytotoxicity, and L929 cells grew and expanded well on the surfaces of the sheets with WZE over 50?%. Undoubtedly, the fabrication of ZE-based polyurethanes without toxic additives such as catalysts, cross-linkers and chain extenders improved the physical properties and cytocompatibility of zein, thus widening the possible range of applications for zein-based biomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700