A high-efficiency aerothermoelastic analysis method
详细信息    查看全文
  • 作者:ZhiQiang Wan (1)
    YaoKun Wang (1)
    YunZhen Liu (1)
    Chao Yang (1)
  • 关键词:aerothermoelastic ; two ; way coupling ; unified hypersonic lifting surface theory ; piston theory ; flutter
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:57
  • 期:6
  • 页码:1111-1118
  • 全文大小:
  • 参考文献:1. Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles. Acta Aeronaut Astronaut Sin, 2010, 31(3): 1-1
    2. Huang S Y, Wang Z Y. The structure modal analysis with thermal environment. Mis Space Vehicle, 2009, 5: 50-2
    3. Yang C, Wu Z G, Wan Z Q, et al. Principle of Aeroelastics. Beijing: Beihang University Press, 2011. 89-1
    4. Garrick I E. A survey of aerothermoelasticity. Aerospace Eng, 1963, 22(1): 140-47
    5. McNamara J J. Aeroelastic and Aerothermoelastic Behavior of Two and Three Dimensional Lifting Surfaces in Hypersonic. Dissertation for the Doctoral Degree. Ann Arbor: University of Michigan, 2005. 151-60
    6. Wu Z G, Hui J P, Yang C. Hypersonic aerothermoelastic analysis of wings. J Beijing Univ Aeronaut Astronaut, 2005, 31(3): 270-73
    7. Chen Hao, Xu M, Cai T X. Thermal flutter analysis of hypersonic wing on transient aerodynamic heating. J Northwest Polytechn Univ, 2012, 30(6): 898-04
    8. McNamara J J, Culler A J, Crowell A R. Aerothermoelastic modeling considerations for hypersonic vehicles. In: Proceedings of 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. America: American Institute of Aeronautics and Astronautics, 2009. 7397
    9. McNamara J J, Friedmann P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future. AIAA J, 2011, 49(6): 1089-122 CrossRef
    10. Culler A J, McNamara J J. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow. AIAA J, 2010, 48(8): 1721-738 CrossRef
    11. Culler A J, McNamara J J. Coupled flow-thermal-structural analysis for response prediction of hypersonic vehicle skin panels. In: Proceedings of 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando: American Institute of Aeronautics and Astronautics, 2010. 2965
    12. Yang C, Li G S, Wan Z Q. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter. Sci China-Technol Sci, 2012, 55(3): 831-40 CrossRef
    13. Eckert E R G. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature. Trans ASME, 1956, 78(6): 1273-283
    14. Yang S M, Tao W S. Heat Transfer. Beijing: Higher Education Press, 2007. 33-3
    15. Lighthill M J. Oscillating airfoils at high Mach number. J Aeronaut Sci, 2012, 20(6): 402-06 CrossRef
    16. Liu D D, Yao Z X, Sarhaddi D, et al. From piston theory to a unified hypersonic-supersonic lifting surface method. J Aircraft, 1997, 34(3): 304-12 CrossRef
    17. Liu D D, Chen P C, Tang L, et al. Expedient hypersonic aerothermodynamics methodology for RLV/TPS design. In: Proceedings of 11th AIAA/AAAF International Conference on Space Planes and Hypersonic Systems and Technologies. Orleans: American Institute of Aeronautics and Astronautics, 2002. 5129
    18. Watkins C E, Berman J H. On the Kernel Function of the Integral Equation Relating Lift and Downwash Distributions of Oscillating Wings in Supersonic Flow. Technical Report, National Advisory Committee for Aeronautics. 1955
    19. Qu Z H, Liu W, Zeng M, et al. Hypersonic Aerodynamics. Changsha: National University of Defense Technology Press, 2000. 13-9
    20. Karpel M, Presente E. Structural dynamic loads in response to impulsive excitation. J Aircraft, 1995, 32(4): 853-61 CrossRef
    21. Bertin J J, Cummings R M. Fifty years of hypersonics: Where we’ve been, where we’re going. Prog Aerospace Sci, 2003, 39(6): 511-36 CrossRef
    22. Karpel M. Modal-based enhancement of integrated design optimization schemes. J Aircraft, 1998, 35(3): 437-44 CrossRef
    23. Qian Y J. Aerodynamics. Beijing: Beihang University Press, 2004. 260-68
    24. Biedron R T, Rumsey C L. CFL3D User’s Manual Version 5.0, 1998. NASA-TM-1998-208444
  • 作者单位:ZhiQiang Wan (1)
    YaoKun Wang (1)
    YunZhen Liu (1)
    Chao Yang (1)

    1. School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
  • ISSN:1869-1927
文摘
In this paper, a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established. The method adopts a two-way coupling form that couples the structure, aerodynamic force, and aerodynamic thermo and heat conduction. The aerodynamic force is first calculated based on unified hypersonic lifting surface theory, and then the Eckert reference temperature method is used to solve the temperature field, where the transient heat conduction is solved using Fourier’s law, and the modal method is used for the aeroelastic correction. Finally, flutter is analyzed based on the p-k method. The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed, and the results indicate the following: (1) the combined effects of the aerodynamic load and thermal load both deform the wing, which would increase if the flexibility, size, and flight time of the hypersonic aircraft increase; (2) the effect of heat accumulation should be noted, and therefore, the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions, such as flutter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700