Acetylcholinesterase Biosensor Based on Poly (diallyldimethylammonium chloride)-multi-walled Carbon Nanotubes-graphene Hybrid Film
详细信息    查看全文
  • 作者:Xia Sun ; Zhili Gong ; Yaoyao Cao ; Professor Xiangyou Wang
  • 关键词:Biosensor ; Acetylcholinesterase ; Multi ; walled carbon nanotubes ; Graphene ; Poly (diallyldimethylammonium chloride)
  • 刊名:Nano-Micro Letters
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:5
  • 期:1
  • 页码:47-56
  • 全文大小:352KB
  • 参考文献:[1]D. W. Miwa, G. R. P. Malpass, S. A. S. Machado and A. J. Motheo, 鈥淓lectrochemical degradation of carbaryl on oxide electrodes鈥? Water Res. 40(17), 3281鈥?289 (2006). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.watres.2006.06.033CrossRef
    [2]F. Arduini, F. Ricci, C. S. Tuta, D. Moscone, A. Amine and G. Palleschi, 鈥淒etection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Bluemodified screen-printed electrode鈥? Anal. Chim. Acta. 580(2), 155鈥?62 (2006). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.aca.2006.07.052CrossRef
    [3]J. M. Abad, F. Pariente, L. Hern谩ndez, H. D. Abruna and E. Lorenzo, 鈥淒etermination of organophosphorus and carbamate pesticides using a piezoelectric biosensor鈥? Anal. Chem. 70(14), 2848鈥?855 (1998). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/ac971374mCrossRef
    [4]D. Du, M. H. Wang, J. Cai, Y. Tao, H. Y. Tu and A. D. Zhang, 鈥淚mmobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing鈥? Analyst 133(12), 1790鈥?795 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1039/b803851aCrossRef
    [5]A. Vakurov, C. E. Simpson, C. L. Daly, T. D. Gibson and P. A. Millner, 鈥淎cetylecholinesterasebased biosensor electrodes for organophosphate pesticide detection: II. Immobilization and stabilization of acetylecholinesterase鈥? Biosens. Bioelectron. 20(11), 2324鈥?329 (2005). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2004.07.022CrossRef
    [6]D. Du, S. Z. Chen, J. Cai and A. D. Zhang, 鈥淓lectrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface鈥? Talanta 74(4), 766鈥?72 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.talanta.2007.07.014CrossRef
    [7]N. Sattarahmady, H. Heli and A. A. Moosavi-Movahedi, 鈥淎n electrochemical acetylcholine biosensor based on nanoshells of hollow nickel microspheres-carbon microparticles-Nafion nanocomposite鈥? Biosens. Bioelectron. 25(10), 2329鈥?335 (2010). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2010.03.031CrossRef
    [8]M. C. Pietrogrande, G. Blo and C. Bighi, 鈥淗ighperformance liquid chromatographic determination of naphthols as 4-aminoantipyrine derivatives: Application to carbaryl鈥? J. Chromatogr. 349(1), 63鈥?8 (1985). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/S0021-9673(00)90633-2CrossRef
    [9]B. D. McGarvey, 鈥淗igh-performance liquid chromatographic methods for the deter- mination of N-methylcarbamate pesticides in water. soil, plants and air鈥? J. Chromatogr. 642(1鈥?), 89鈥?05 (1993). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/0021-9673 (93)80079-NCrossRef
    [10]E. P. Syrago-Styliani, T. Anthony and A. S. Panayotis. 鈥淒etermination of carbofuran, carbaryl and their main metabolites in plasma samples of agricultural populations using gas chromatographytandem mass spectrometry鈥? Anal. Bioanal. Chem. 385(8), 1444鈥?456 (2006). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1007/s00216-006-0569-0CrossRef
    [11]C. Mohan, Y. Kumar, J. Madan and N. Saxena, 鈥淢ultiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography鈥? Environ. Monit. Assess. 165(1鈥?), 573鈥?76 (2010). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1007/s10661-009-0968-8CrossRef
    [12]X. Sun and X. Y. Wang, 鈥淎cetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides鈥? Biosens. Bioelectron. 25(12), 2611鈥?614 (2010). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2010.04.028CrossRef
    [13]D. Du, W. J. Chen, W. Y. Zhang, D. L. Liu, H. B. Li and Y. H. Lin, 鈥淐ovalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion鈥? Biosens. Bioelectron. 25(6), 1370鈥?375 (2010). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2009.10.032CrossRef
    [14]M. Shi, J. J. Xu, S. Zhang, B. H. Liu and J. L. Kong, 鈥淎 mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system鈥? Talanta 68(4), 1089鈥?095 (2006). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.talanta.2005.07.007CrossRef
    [15]F. N. Kok and V. Hasirci, 鈥淒etermination of binary pesticide mixtures by an acetylcholinesterasecholine oxidase biosensor鈥? Biosens. Bioelectron. 19(7), 661鈥?65 (2004). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2003.07.002CrossRef
    [16]A. Amine, H. Mohammadi, I. Bourais and G. Palleschi, 鈥淓nzyme inhibition-based biosensors for food safety and environmental monitoring鈥? Biosens. Bioelectron. 21(8), 1405鈥?423 (2006). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2005.07.012CrossRef
    [17]D. Du, S. Z. Chen, J. Cai and A. D. Zhang, 鈥淚mmobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide鈥? Biosens. Bioelectron. 23(1), 130鈥?34 (2007). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2007.03.008CrossRef
    [18]S. Sotiropoulou and N. A. Chaniotakis, 鈥淟owering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix鈥? Anal. Chim. Acta. 530(2), 199鈥?04 (2005). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.aca.2004.09.007CrossRef
    [19]D. Shan, E. Han, H. G. Xue and S. Cosnier, 鈥淪elfassembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide鈥? Biomacromolecules 8(10), 3041鈥?046 (2007). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/bm070329dCrossRef
    [20]W. Zhao, P. Y. Ge, J. J. Xu and H. Y. Chen, 鈥淪elective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase- inhibition biosensor鈥? Environ. Sci. Technol. 43(17), 6724鈥?729 (2009).http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/es900841nCrossRef
    [21]L. Q. Rong, C. Yang, Q. Y. Qian and X. H. Xia, 鈥淪tudy of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes鈥? Talanta 72(2), 819鈥?24 (2007). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.talanta.2006.12.037CrossRef
    [22]Y. Wang, Y. M. Li, L. H. Tang, J. Lu and J. H. Li, 鈥淎pplication of graphene-modified electrode for selective detection of dopamine鈥? Electrochem. Commun. 11(4), 889鈥?92 (2009). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.elecom.2009.02.013CrossRef
    [23]C. S. Shan, H. F. Yang, J. F. Song, D. X. Han, A. Ivaska and L. Niu, 鈥淒irect electrochemistry of glucose oxidase and biosensing for glucose based on graphene鈥? Anal. Chem. 81(6), 2378鈥?382 (2009). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/ac802193cCrossRef
    [24]X. H. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. H. Lin, 鈥淕lucose oxidase-graphenechitosan modified electrode for direct electrochemistry and glucose sensing鈥? Biosens. Bioelectron. 25(4), 901鈥?05 (2009).http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2009.09.004CrossRef
    [25]Y. Li, R. Yuan, Y. Q. Chai and Z. J. Song, 鈥淓lectrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker鈥? Electrochim. Acta. 56(19), 6715鈥?721. http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.electacta.2011.05.066
    [26]J. D. Huang, X. R. Xing, X. M. Zhang, X. R. He, Q. Lin, W. J. Lian and H. Zhu, 鈥淎 molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine鈥? Food Res. Int. 44(1), 276鈥?81 (2011). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.foodres.2010.10.020CrossRef
    [27]Z. Yang, R. G. Gao, N. T. Hu, J. Chai, Y. W. Cheng, L. Y. Zhang, H. Wei, E. S. Kong and Y. F. Zhang, 鈥淭he prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications鈥? Nano-Micro Lett. 4(1), 1鈥? (2012). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.3786/nml.v4i1.p1-9CrossRef
    [28]R. Y. Zhang and X. M. Wang, 鈥淥ne step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response鈥? Chem. Mater. 19(5), 976鈥?78 (2007). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/cm062791vCrossRef
    [29]T. Yang, N. Zhou, Y. C. Zhang, W. Zhang, K. Jiao and G. C. Li, 鈥淪ynergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites鈥? Biosens. Bioelectron. 24(7), 2165鈥?170 (2009). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2008.11.011CrossRef
    [30]Y. H. Xiao and C. M. Li, 鈥淣anocomposites: from fabrications to electrochemical bioapplications鈥? Electroanal. 20(6), 648鈥?62 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1002/elan.200704125CrossRef
    [31]H. Zhang, L. Z. Fan and S. H. Yang, 鈥淪ignificantly accelerated direct electron-transfer kinetics of hemoglobin in a C60-MWCNT nanocomposite film鈥? Chem. Eur. J. 12(27), 7161鈥?166 (2006). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1002/chem.200600055CrossRef
    [32]M. Zhou, J. D. Guo, L. P. Guo and J. Bai, 鈥淓lectrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system鈥? Anal. Chem. 80(12), 4642鈥?650 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/ac702496kCrossRef
    [33]X. Chen, J. Zhu, Q. Xi and W. S. Yang, 鈥淎 high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films鈥? Sens. Actuators B 161(1), 648鈥?54 (2012). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.snb.-2011.10.085CrossRef
    [34]Y. Y. Wang, X. S. Wang, B. Y. Wu, Z. X. Zhao, F. Yin, S. Li, X. Qin and Q. Chen, 鈥淒ispersion of single-walled carbon nanotubes in poly(diallyldimethylammonium chloride) for preparation of a glucose biosensor鈥? Sens. Actuators B 130(2), 809鈥?15 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.snb.2007.10.054CrossRef
    [35]J. Manso, M. L. Mena, P. Y谩帽ez-Sede帽o and J. M. Pingarr贸n, 鈥淎lcohol dehydrogenase amperometric biosensor based on a colloidal gold-carbon nanotubes composite electrode鈥? Electrochim. Acta 53(11), 4007鈥?012 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.electacta.2007.10.003CrossRef
    [36]B. Kim, H. Park and W. M. Sigmund, 鈥淓lectrostatic interactions between shortened multiwall carbon nanotubes and polyelectrolytes鈥? Langmuir 19(6), 2525鈥?527 (2003). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/la026746nCrossRef
    [37]B. Kim and W. M. Sigmund, 鈥淪elf-alignment of shortened multiwall carbon nanotubes on polyelectrolyte layers鈥? Langmuir 19(11), 4848鈥?851 (2003). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/la026679xCrossRef
    [38]J. J. Rouse and P. T. Lillehei, 鈥淓lectrostatic assembly of polymer/single walled carbon nanotube multilayer films鈥? Nano Lett. 3(1), 59鈥?2 (2003). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/nl025780jCrossRef
    [39]R. Z. Ma, T. Sasaki and Y. Bando, 鈥淟ayer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations鈥? J. Am. Chem. Soc. 126(33), 10382鈥?0388 (2004). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/ja048855pCrossRef
    [40]A. B. Artyukhin, O. Bakajin, P. Stroeve and A. Noy, 鈥淟ayer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates鈥? Langmuir 20(4), 1442鈥?448 (2004). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/la035699bCrossRef
    [41]K. P. Liu, J. J. Zhang, G. H. Yang, C. M. Wang and J. J. Zhu, 鈥淒irect electrochemistry and electrocatalysis of hemoglobin based on poly (diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film鈥? Electrochem. Commun. 12(3), 402鈥?05 (2010). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.elecom.2010.01.004CrossRef
    [42]Q. L. Feng, K. P. Liu, J. J. Fu, Y. Z. Zhang, Z. X. Zheng, C. M. Wang, Y. L. Du and W. C. Ye, 鈥淒irect electrochemistry of hemoglobin based on nano-composite film of gold nanopaticles and poly (diallyldimethylammonium chloride) functionalized graphene鈥? Electrochim. Acta. 60, 304鈥?08 (2012). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.electacta.2011.11.048CrossRef
    [43]M. Egu铆laz, R. Villalonga, P. Yanez-Sedeno and J. M. Pingarron, 鈥淒esigning electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors鈥? Anal. Chem. 83(20), 7807鈥?814 (2011). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1021/ac201466mCrossRef
    [44]D. W. Wang, F. Li, M. Liu, G. Q. Lu and H. M. Cheng, 鈥?D periodic hierarchical porous graphitic carbon material for high rate electrochemical capacitive energy storage鈥? Angew. Chem. Int. Ed. 47(2), 373鈥?76 (2007). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1002/anie.200702721CrossRef
    [45]A. Walcarius and A. Kuhn, 鈥淥rdered porous thin films in electrochemical analysis鈥? Trends Anal. Chem. 27(7), 593鈥?03 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.trac.2008.03.011CrossRef
    [46]J. Zhang, J. Lia, F. Yang, B. L. Zhang and X. R. Yang, 鈥淧reparation of prussian blue@Pt nanoparticles/ carbon nanotubes composite material for efficient determination of H2O2鈥? Sens. Actuators B 143(1), 373鈥?80 (2009). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.snb.2009.08.018CrossRef
    [47]D. Du, S. Z. Chen, D. D. Song, H. L. Li and X. Chen, 鈥淒evelopment of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface鈥? Biosens. Bioelectron. 24(3), 475鈥?79 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2008.05.005CrossRef
    [48]N. Chauhan and C. S. Pundir, 鈥淎n amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides鈥? Anal. Chim. Acta. 701(1), 66鈥?4 (2011). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.aca.2011.06.014CrossRef
    [49]M. Bernabei, S. Chiavarii, C. Cremisini and G. Palleschi, 鈥淎nticholinesterase activity measurement by a choline biosensor: application in water analysis鈥? Biosens. Bioelectron. 8(5), 265鈥?71 (1993). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/0956-5663 (93)80014-GCrossRef
    [50]D. Du, X. X. Ye, J. Cai, J. Liu and A. D. Zhang, 鈥淎cetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates鈥? Biosens. Bioelectron. 25(11), 2503鈥?508 (2010). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.bios.2010.04.018CrossRef
    [51]K. Wang, Q. Liu, L. Dai, J. J. Yan, C. Ju, B. J. Qiu and X. Y. Wu, 鈥淎 highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite鈥? Anal. Chim. Acta 695(1鈥?), 84鈥?8 (2011). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.aca.2011.03.042CrossRef
    [52]Y. H. Song, M. Zhang, L. Wang, L. L. Wan, X. P. Xiao, S. H. Ye and J. R. Wang, 鈥淎 novel biosensor based on acetylecholinesterase/prussian blue-chitosan modified electrode for detection of carbaryl pesticides鈥? Electrochim. Acta 56(21), 7267鈥?271 (2011). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.electacta.2011.06.054CrossRef
    [53]J. Caetano and S. A. S. Machado, 鈥淒etermination of carbaryl in tomato 鈥渋n natura鈥?using an amperometric biosensor based on the inhibition of acetylcholinesterase activity鈥? Sens. Actuators B 129(1), 40鈥?6 (2008). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.snb.2007.07.098CrossRef
    [54]D. Du, J. W. Ding, J. Cai and A. D. Zhang, 鈥淒etermination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan鈥? Colloids Surf. B 58(2), 145鈥?50 (2007). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.colsurfb.2007.03.006CrossRef
    [55]F. C. Moraes, L. H. Mascaro, S. A. S. Machado and C. M. A. Brett, 鈥淒irect electrochemical determination of carbaryl using a multi-walled carbon nanotube/ cobalt phthalocyanine modified electrode鈥? Talanta 79(5), 1406鈥?411 (2009). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.talanta.2009.06.013CrossRef
    [56]I. Cesarino, F. C. Moraes, M. R. V. Lanza and S. A. S. Machado, 鈥淓lectrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes鈥? Food Chem. 135(3), 873鈥?79 (2012). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.foodchem.2012.04.147CrossRef
    [57]D. Du, S. Z. Chen, J. Cai and D. D. Song, 鈥淐omparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol-gel composite鈥? J. Electroanal. Chem. 611(1鈥?), 60鈥?6 (2007). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.jelechem.2007.08.007CrossRef
    [58]H. S. Yin, S. Y. Ai, J. Xu, W. J. Shi and L. S. Zhu, 鈥淎mperometric biosensor basedon immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim鈥? J. Electroanal. Chem. 637(1鈥?), 21鈥?7 (2009). http://鈥媎x.鈥媎oi.鈥媜rg/鈥?/span> 10.1016/j.jelechem.2009.09.025CrossRef
  • 作者单位:Xia Sun (18)
    Zhili Gong (18)
    Yaoyao Cao (18)
    Professor Xiangyou Wang (18)

    18. College of Agriculture and Food Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
In this paper, an amperometric acetylcholinesterase (AChE) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly (diallyldimethy-lammonium chloride) -multi-walled carbon nanotubes-graphene hybrid film was modified onto the glassy carbon electrode (GCE) surface, then AChE was immobilized onto the modified GCE to fabricate the AChE biosensor. The morphologies and electrochemistry properties of the prepared AChE biosensor were investigated by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Based on the inhibition of pesticides on the AChE activity, using carbaryl as model compounds, the biosensor exhibited low detection limit, good reproducibility and high stability in a wide range. Moreover, the biosensor can also be used for direct analysis of practical samples, which would provide a new promising tool for pesticide residues analysis. Keywords Biosensor Acetylcholinesterase Multi-walled carbon nanotubes Graphene Poly (diallyldimethylammonium chloride)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700