Microstructure, morphology and sunlight response of cuprous oxide thin films
详细信息    查看全文
  • 作者:Min Zhao ; Yaoyao Jiang ; Jianguo Lv ; Yue Sun
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:2
  • 页码:1799-1804
  • 全文大小:1,332 KB
  • 参考文献:1.J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867–871 (2006)CrossRef
    2.M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondo, K. Domen, Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3, 357–358 (1998)CrossRef
    3.S.S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochim. Acta 53, 2226–2231 (2008)CrossRef
    4.B. Geng, J. Liu, Y. Zhao, C. Wang, A room-temperature chemical route to homogeneous core-shell Cu2O structures and their application in biosensors. CrystEngComm 13, 697–701 (2011)CrossRef
    5.A. Ahmed, N.S. Gajbhiye, S. Kurian, Structural and magnetic properties of self assembled Fe-doped Cu2O nanorods. J. Solid State Chem. 183, 2248–2251 (2010)CrossRef
    6.J. Deuermeier, J. Gassmann, J. Broetz, A. Klein, Reactive magnetron sputtering of Cu2O: dependence on oxygen pressure and interface formation with indium tin oxide. J. Appl. Phys. 109, 113704 (2011)CrossRef
    7.J. Li, Z. Mei, D. Ye, H. Liang, Y. Liu, X. Du, Growth of single-crystalline Cu2O (111) film on ultrathin MgO modified alpha-Al2O3 (0001) substrate by molecular beam epitaxy. J. Cryst. Growth 353, 63–67 (2012)CrossRef
    8.B. Karthikeyan, R. Udayabhaskar, T.P. Rose, T. Pandiyarajan, R. Philip, Sol-gel prepared Cu2O microspheres: linear and nonlinear optical properties. RSC Adv. 4, 39541–39546 (2014)CrossRef
    9.G.-F. Pan, S.-B. Fan, J. Liang, Y.-X. Liu, Z.-Y. Tian, CVD synthesis of Cu2O films for catalytic application. RSC Adv. 5, 42477–42481 (2015)CrossRef
    10.S. Jeong, E.S. Aydil, Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. J. Cryst. Growth 311, 4188–4192 (2009)CrossRef
    11.M.-J. Chen, C.-Y. Wu, Y.-M. Kuo, H.-Y. Chen, C.-H. Tsai, Preparation of Cu2O nanowires by thermal oxidation-plasma reduction method. Appl. Phys. A Mater. Sci. Process. 108, 133–141 (2012)CrossRef
    12.J. Cui, U.J. Gibson, A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells. J. Phys. Chem. C 114, 6408–6412 (2010)CrossRef
    13.R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111). Chem. Mater. 17, 725–729 (2005)CrossRef
    14.X. Jiang, M. Zhang, S. Shi, G. He, X. Song, Z. Sun, Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition. Nanoscale Res. Lett. 9, 219 (2014)CrossRef
    15.F. Sun, Y. Guo, W. Song, J. Zhao, L. Tang, Z. Wang, Morphological control of Cu2O micro-nanostructure film by electrodeposition. J. Cryst. Growth 304, 425–429 (2007)CrossRef
    16.P. Grez, F. Herrera, G. Riveros, A. Ramirez, R. Henriquez, E. Dalchiele, R. Schrebler, Morphological, structural, and photoelectrochemical characterization of n-type Cu2O thin films obtained by electrodeposition. Phys. Status Solidi A Appl. Mater. Sci. 209, 2470–2475 (2012)CrossRef
    17.S. Zhang, S. Zhang, F. Peng, H. Zhang, H. Liu, H. Zhao, Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance. Electrochem. Commun. 13, 861–864 (2011)CrossRef
    18.S. Haller, J. Jung, J. Rousset, D. Lincot, Effect of electrodeposition parameters and addition of chloride ions on the structural and optoelectronic properties of Cu2O. Electrochim. Acta 82, 402–407 (2012)CrossRef
    19.K. Tang, X. Wang, W. Yan, J. Yu, R. Xu, Fabrication of superhydrophilic Cu2O and CuO membranes. J. Membr. Sci. 286, 279–284 (2006)CrossRef
    20.A. El Hichou, S. Diliberto, N. Stein, Influence of the aluminum incorporation on the properties of electrodeposited ZnO thin films. Surf. Coat. Technol. 270, 236–242 (2015)CrossRef
    21.J. Morales, L. Sanchez, S. Bijani, L. Martinez, M. Gabas, J.R. Ramos-Barrado, Electrodeposition of Cu2O: an excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries. Electrochem. Solid State Lett. 8, A159–A162 (2005)CrossRef
    22.L. Wang, M. Tao, Fabrication and characterization of p–n homojunctions in cuprous oxide by electrochemical deposition. Electrochem. Solid-State Lett. 10, H248–H250 (2007)CrossRef
    23.M. Smirnov, C. Baban, G.I. Rusu, Structural and optical characteristics of spin-coated ZnO thin films. Appl. Surf. Sci. 256, 2405–2408 (2010)CrossRef
    24.A. Eskandari, P. Sangpour, M.R. Vaezi, Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: investigation of surface energy and roughness. Mater. Chem. Phys. 147, 1204–1209 (2014)CrossRef
    25.Q. Huang, J. Li, X. Bi, The improvement of hole transport property and optical band gap for amorphous Cu2O films. J. Alloy. Compd. 647, 585–589 (2015)CrossRef
    26.W. Wu, K. Feng, B. Shan, N. Zhang, Orientation and grain shape control of Cu2O film and the related properties. Electrochim. Acta 176, 59–64 (2015)CrossRef
    27.M. Sabbaghan, J. Beheshtian, R. Niazmand, Liarjdame, preparation of Cu2O nanostructures by changing reducing agent and their optical properties. Mater. Lett. 153, 1–4 (2015)CrossRef
    28.C.M. McShane, K.-S. Choi, Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 131, 2561–2569 (2009)CrossRef
    29.H. Liu, N. Gao, M. Liao, X. Fang, Hexagonal-like Nb2O5 nanoplates-based photodetectors and photocatalyst with high performances. Sci. Rep. 5, 7716 (2015)CrossRef
    30.X. Liu, H. Du, P. Wang, T.-T. Lim, X.W. Sun, A high-performance UV/visible photodetector of Cu2O/ZnO hybrid nanofilms on SWNT-based flexible conducting substrates. J. Mater. Chem. C 2, 9536–9542 (2014)CrossRef
    31.P. Sun, Y. Liu, X. Wan, X. Meng, R. Su, S. Yu, Synthesis of long Ag nanowires and its application in GaN nanowires photodetector as transparent electrodes. J. Mater. Sci.: Mater. Electron. 26, 6787–6792 (2015)
    32.L. Peng, L. Hu, X. Fang, Low-dimensional nanostructure ultraviolet photodetectors. Adv. Mater. 25, 5321–5328 (2013)CrossRef
    33.C.F. Dee, S.K. Chong, S.A. Rahman, F.S. Omar, N.M. Huang, B.Y. Majlis, M.M. Salleh, Hierarchical Si/ZnO trunk
    anch nanostructure for photocurrent enhancement. Nanoscale Res. Lett. 9, 469 (2014)CrossRef
    34.R.-C. Wang, C.-H. Li, Dry synthesis and photoresponse of single-crystalline Cu2O nanorod arrays. J. Electrochem. Soc. 159, K73–K77 (2012)CrossRef
    35.N.G. Elfadill, M.R. Hashim, K.M.A. Saron, K.M. Chahrour, M.A. Qaeed, M. Bououdina, Ultraviolet–visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate. Mater. Chem. Phys. 156, 54–60 (2015)CrossRef
    36.Q. Humayun, M. Kashif, U. Hashim, A. Qurashi, Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors. Nanoscale Res. Lett. 9, 29 (2014)CrossRef
  • 作者单位:Min Zhao (1)
    Yaoyao Jiang (1)
    Jianguo Lv (1)
    Yue Sun (1)
    Li Cao (1)
    Gang He (2)
    Miao Zhang (2)
    Zhaoqi Sun (2)

    1. School of Electronic and Information Engineering, Hefei Normal University, Hefei, 230601, China
    2. School of Physics and Material Science, Anhui University, Hefei, 230039, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
Cuprous oxide thin films were successfully synthesized on FTO substrates via the electrochemical method by changing the deposition potential. The effects of deposition potential on the microstructure, morphology, optical band gap and photoresponse of the thin films were investigated. The results revealed that intensity of (111) diffraction peak and preferential orientation along (111) plane increase with increasing the absolute value of deposition potential. The thin film with the more negative deposition potential has an increased average particle size and compact degree. The optical band gap of the sample deposited at −0.5 eV presents the largest value of 1.82 eV. Upon sunlight illumination, the photocurrent of thin film rises quickly at first and then gets slower. The slow photoresponse may be attributed to the capture of carriers by deep level traps in our case.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700