MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus
详细信息    查看全文
  • 作者:Yoshiki Yasukochi (1)
    Toshifumi Kurosaki (2)
    Masaaki Yoneda (2)
    Hiroko Koike (3)
    Yoko Satta (1)
  • 关键词:Balancing selection ; Conservation genetics ; DQB ; Genetic diversity ; Japanese black bear ; Major histocompatibility complex ; Ursidae ; Ursus thibetanus
  • 刊名:BMC Evolutionary Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:5148KB
  • 参考文献:1. Japan Wildlife Research Center: / Report on population status of Japanese bears in 1998. Japan Wildlife Research Center; 1999. in Japanese
    2. Ohnishi N, Yasukochi Y: The origin of the last Asian black bear in Kyushu Island. / Mamm Sci 2010, 50:177鈥?80. in Japanese, with English summary
    3. Kurihara T: Records of recent bear witnesses in Kyushu Island, Japan. / Mamm Sci 2010, 50:187鈥?93. in Japanese, with English summary
    4. Saitoh T, Ishibashi Y, Kanamori H, Kitahara E: Genetic status of fragmented populations of the Asian black bear Ursus thibetanus in western Japan. / Popul Ecol 2001, 43:221鈥?27. CrossRef
    5. Ishibashi Y, Saitoh T: Phylogenetic relationships among fragmented Asian black bear (Ursus thibetanus) populations in western Japan. / Conservat Genet 2004, 5:311鈥?23. CrossRef
    6. Ohnishi N, Saitoh T, Ishibashi Y, Oi T: Low genetic diversities in isolated populations of the Asian black bear (Ursus thibetanus) in Japan, in comparison with large stable populations. / Conservat Genet 2007, 8:1331鈥?337. CrossRef
    7. Ohnishi N, Uno R, Ishibashi Y, Tamate HB, Oi T: The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. / Heredity 2009, 102:579鈥?89. CrossRef
    8. Yasukochi Y, Nishida S, Han S-H, Kurosaki T, Yoneda M, Koike H: Genetic structure of the Asiatic black bear in Japan using mitochondrial DNA analysis. / J Hered 2009, 100:297鈥?08. CrossRef
    9. Ohnishi N, Yuasa T, Morimitsu Y, Oi T: Mass-intrusion-induced temporary shift in the genetic structure of an Asian black bear population. / Mamm Stud 2011, 36:67鈥?1. CrossRef
    10. Yoneda M, Mano T: The present situation and issues for estimating population size and monitoring population trends of bears in Japan. / Mamm Sci 2011, 51:79鈥?5. in Japanese, with English summary
    11. Yamamoto T, Oka T, Ohnishi N, Tanaka H, Takatsuto N, Okumura Y: Genetic Characterization of Northernmost Isolated Population of Asian Black Bear (Ursus thibetanus) in Japan. / Mamm Stud 2012, 37:85鈥?1. CrossRef
    12. Uno R, Kondo M, Yuasa T, Yamauchi K, Tsuruga H, Tamate HB, Yoneda M: Assessment of genotyping accuracy in a non-invasive DNA-based population survey of Asiatic black bears (Ursus thibetanus): lessons from a large-scale pilot study in Iwate prefecture, northern Japan. / Popul Ecol 2012, 54:509鈥?19. CrossRef
    13. Ministry of the Environment: / Threatened Wildlife of Japan鈥擱ed Data Book. 2nd edition. Japan Wildlife Research Center; 2002:1. [ / Mammalia] in Japanese
    14. Klein J, Takahata N: The major histocompatibility complex and the quest for origins. / Immunol Rev 1990, 113:5鈥?5. CrossRef
    15. Man B: Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. / Nature 1999, 401:921鈥?23. CrossRef
    16. Delisle I, Strobeck C: A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. / Mol Phylogenet Evol 2005, 37:192鈥?01. CrossRef
    17. Yu L, Luan PT, Jin W, Ryder OA, Chemnick LG, Davis HA, Zhang YP: Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora). / Syst Biol 2011, 60:175鈥?87. CrossRef
    18. Hoelzel AR, Stephens JC, O鈥橞rien SJ: Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. / Mol Biol Evol 1999, 16:611鈥?18. CrossRef
    19. Lento GM, Baker CS, David V, Yuhki N, Gales NJ, O鈥橞rien SJ: Automated single-strand conformation polymorphism reveals low diversity of a Major Histocompatibility Complex Class II gene in the threatened New Zealand sea lion. / Mol Ecol Notes 2003, 3:346鈥?49. CrossRef
    20. Weber DS, Stewart BS, Schienman J, Lehman N: Major histocompatibility complex variation at three class II loci in the northern elephant seal. / Mol Ecol 2004, 13:711鈥?18. CrossRef
    21. Froeschke G, Sommer S: MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. / Mol Biol Evol 2005, 22:1254鈥?259. CrossRef
    22. Smith S, Belov K, Hughes J: MHC screening for marsupial conservation: extremely low levels of class II diversity indicate population vulnerability for an endangered Australian marsupial. / Conservat Genet 2009, 11:269鈥?78. CrossRef
    23. Bowen L, Aldridge BM, Gulland F, Woo J, Van Bonn W, DeLong R, Stott JL, Johnson ML: Molecular characterization of expressed DQA and DQB genes in the California sea lion (Zalophus californianus). / Immunogenetics 2002, 54:332鈥?47. CrossRef
    24. Bowen L, Aldridge BM, Gulland F, Van Bonn W, DeLong R, Melin S, Lowenstine LJ, Stott JL, Johnson ML: Class II multiformity generated by variable MHC-DRB region configurations in the California sea lion (Zalophus californianus). / Immunogenetics 2004, 56:12鈥?7. CrossRef
    25. Siddle HV, Marzec J, Cheng Y, Jones M, Belov K: MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. / Proc Biol Sci 2010, 277:2001鈥?006. CrossRef
    26. Lane A, Cheng Y, Wright B, Hamede R, Levan L, Jones M, Ujvari B, Belov K: New insights into the role of MHC diversity in devil facial tumour disease. / PLoS One 2012, 7:e36955. CrossRef
    27. Mainguy J, Worley K, C么t茅 SD, Coltman DW: Low MHC DRB class II diversity in the mountain goat: past bottlenecks and possible role of pathogens and parasites. / Conservat Genet 2007, 8:885鈥?91. CrossRef
    28. Zeng CJ, Yu JQ, Pan HJ, Wan QH, Fang SG: Assignment of the giant panda MHC class II gene cluster to chromosome 9q by fluorescence in situ hybridization. / Cytogene Genome Res 2005, 109:533. CrossRef
    29. Zeng CJ, Pan HJ, Gong SB, Yu JQ, Wan QH, Fang SG: Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region. / BMC Genom 2007, 8:315. CrossRef
    30. Wan QH, Zhu L, Wu H, Fang SG: Major histocompatibility complex class II variation in the giant panda (Ailuropoda melanoleuca). / Mol Ecol 2006, 15:2441鈥?450. CrossRef
    31. Wan QH, Zeng CJ, Ni XW, Pan HJ, Fang SG: Giant panda genomic data provide insight into the birth-and-death process of mammalian major histocompatibility complex class II genes. / PLoS One 2009, 4:11. CrossRef
    32. Zhu L, Ruan XD, Ge YF, Wan QH, Fang SG: Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca). / BMC Genet 2007, 8:29. CrossRef
    33. Pan HJ, Wan QH, Fang SG: Molecular characterization of major histocompatibility complex class I genes from the giant panda (Ailuropoda melanoleuca). / Immunogenetics 2008, 60:185鈥?93. CrossRef
    34. Chen YY, Zhang YY, Zhang HM, Ge YF, Wan QH, Fang SG: Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda. / J Exp Zool B Mol Dev Evol 2010, 314:208鈥?23.
    35. Goda N, Mano T, Masuda R: Genetic diversity of the MHC class-II DQA gene in brown bears (Ursus arctos) on Hokkaido, Northern Japan. / Zoolog Sci 2009, 26:530鈥?35. CrossRef
    36. Goda N, Mano T, Kosintsev P, Vorobiev A, Masuda R: Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae. / Tissue Antigens 2010, 76:404鈥?10. CrossRef
    37. Kuduk K, Babik W, Bojarska K, Sliwinska EB, Kindberg J, Taberlet P, Swenson JE, Radwan J: Evolution of major histocompatibility complex class I and class II genes in the brown bear. / BMC Evol Biol 2012, 12:197. CrossRef
    38. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK: High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. / Proc Nat Acad Sci USA 2004, 101:3490鈥?494. CrossRef
    39. Yasukochi Y, Kurosaki T, Yoneda M, Koike H: Identification of the expressed MHC class II DQB gene of the Asiatic black bear, Ursus thibetanus, in Japan. / Gene Genet Syst 2010, 85:147鈥?55. CrossRef
    40. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC: Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. / Nature 1993, 364:33鈥?9. CrossRef
    41. Stern LJ, Wiley DC: Antigenic peptide binding by class I and class II histocompatibility proteins. / Structure 1994, 2:245鈥?51. CrossRef
    42. Yoneda M: The local population division, conservation and management for the Asiatic black bear. / Landscape Stud 2001, 64:314鈥?17. in Japanese
    43. Sawyer S: Statistical tests for detecting gene conversion. / Mol Biol Evol 1989, 6:526鈥?38.
    44. Satta Y: Balancing selection at HLA loci. In / The Proceedings of the 17th Taniguchi Symposium. Edited by: Takahata N. Science Society Press, Tokyo: Japan; 1992:111鈥?31.
    45. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. / Bioinformatics (Oxford, England) 2010, 26:2462鈥?463. CrossRef
    46. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. / Mol Biol Evol 1987, 4:406鈥?25.
    47. Zhang J, Rosenberg HF, Nei M: Positive Darwinian selection after gene duplication in primate ribonuclease genes. / Proc Nat Acad Sci USA 1998, 95:3708鈥?713. CrossRef
    48. Yang Z, Nielsen R, Goldman N, Pedersen AM: Codon-substitution models for heterogeneous selection pressure at amino acid sites. / Genetics 2000, 155:431鈥?49.
    49. Yang Z, Wong WSW, Nielsen R: Bayes empirical Bayes inference of amino acid sites under positive selection. / Mol Biol Evol 2005, 22:1107鈥?118. CrossRef
    50. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. / Mol Biol Evol 2007, 24:1586鈥?591. CrossRef
    51. Wilson DJ, McVean G: Estimating diversifying selection and functional constraint in the presence of recombination. / Genetics 2006, 172:1411鈥?425. CrossRef
    52. Li W: / Molecular Evolution. Sunderland, Massachusetts: Sinauer Associates; 1997.
    53. Krause J, Unger T, No莽on A, Malaspinas AS, Kolokotronis SO, Stiller M, Soibelzon L, Spriggs H, Dear PH, Briggs AW, Bray SC, O鈥橞rien SJ, Rabeder G, Matheus P, Cooper A, Slatkin M, P盲盲bo S, Hofreiter M: Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. / BMC Evol Biol 2008, 8:220. CrossRef
    54. Bon C, Caudy N, De Dieuleveult M, Fosse P, Philippe M, Maksud F, Beraud-Colomb 脡, Bouzaid E, Kefi R, Laugier C, Rousseau B, Casane D, Van Der Plicht J, Elalouf JM: Deciphering the complete mitochondrial genome and phylogeny of the extinct cave bear in the Paleolithic painted cave of Chauvet. / Proc Nat Acad Sci USA 2008, 105:17447鈥?7452. CrossRef
    55. Dobson M, Kawamura Y: Origin of the Japanese land mammal fauna: allocation of extant species to historically-based categories. / Quat Res 1998, 37:385鈥?95. CrossRef
    56. / IUCN Red List of Threatened Species; Version 2012.8. [www.iucnredlist.org]
    57. Frankham R, Ballou JD, Briscoe DA: / Introduction to Conservation Genetics. Cambridge: Cambridge University Press; 2002. CrossRef
    58. Takahata N, Satta Y, Klein J: Polymorphism and balancing selection at major histocompatibility complex loci. / Genetics 1992, 130:925鈥?38.
    59. Del Guercio MF, Sidney J, Hermanson G, Perez C, Grey HM, Kubo RT, Sette A: Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. / J Immunol 1995, 154:685鈥?93.
    60. Sidney J, Del Guercio MF, Southwood S, Engelhard VH, Appella E, Rammensee HG, Falk K, R枚tzschke O, Takiguchi M, Kubo RT: Several HLA alleles share overlapping peptide specificities. / J Immunol 1995, 154:247鈥?59.
    61. Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A: Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. / Immunogenetics 2011, 63:325鈥?35. CrossRef
    62. Hughes AL, Nei M: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. / Nature 1988, 335:167鈥?70. CrossRef
    63. Hughes AL, Nei M: Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. / Proc Nat Acad Sci USA 1989, 86:958鈥?62. CrossRef
    64. Takahata N, Nei M: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. / Genetics 1990, 124:967鈥?78.
    65. Takahata N: A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. / Proc Nat Acad Sci USA 1990, 87:2419鈥?423. CrossRef
    66. Satta Y: Balancing selection at HLA loci. In / Mechanisms of molecular evolution. Edited by: Takahata N, Clark A. Sunderland, Massachusetts: Sinauer Associates; 1993:129鈥?49.
    67. Sutton JT, Nakagawa S, Robertson BC, Jamieson IG: Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. / Mol Ecol 2011, 20:4408鈥?0. CrossRef
    68. Ejsmond MJ, Babik W, Radwan J: MHC allele frequency distributions under parasite-driven selection: A simulation model. / BMC Evol Biol 2010, 10:332. CrossRef
    69. Edwards SV, Grahn M, Potts WK: Dynamics of Mhc evolution in birds and crocodilians: amplification of class II genes with degenerate primers. / Mol Ecol 1995, 4:719鈥?29. CrossRef
    70. Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL: Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). / Mol Ecol 2008, 17:2652鈥?665. CrossRef
    71. Murray BW, Malik S, White BN: Sequence variation at the major histocompatibility complex locus DQ beta in beluga whales (Delphinapterus leucas). / Mol Biol Evol 1995, 12:582鈥?93.
    72. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. / Mol Biol Evol 2011, 28:2731鈥?739. CrossRef
    73. Jones D, Taylor W, Thornton J: The rapid generation of mutation data matrices from protein sequences. / Comput Appl Biosci 1992, 8:275鈥?82.
    74. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. / Syst Biol 2010, 59:307鈥?21. CrossRef
    75. Bryant D, Moulton V: Neighbor-net: an agglomerative method for the construction of phylogenetic networks. / Mol Biol Evol 2004, 21:255鈥?65. CrossRef
    76. Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. / Mol Biol Evol 2006, 23:254鈥?67. CrossRef
    77. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. / Bioinformatics 2003, 19:1572鈥?574. CrossRef
    78. Rambaut A: / Tree Figure Drawing Tool Version 1.3.1. 2009.
    79. Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. / Evol Bioinformatics Online 2005, 1:47鈥?0.
    80. Hudson RR, Boos DD, Kaplan NL: A statistical test for detecting geographic subdivision. / Mol Biol Evol 1992, 9:138鈥?51.
    81. Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. / Bioinformatics 2009, 25:1451鈥?452. CrossRef
    82. Hedrick PW: A standardized genetic differentiation measure. / Evolution 2005, 59:1633鈥?638.
    83. Jost L: GST and its relatives do not measure differentiation. / Mol Ecol 2008, 17:4015鈥?026. CrossRef
    84. Crawford NG: SMOGD: Software for the Measurement of Genetic Diversity. / Mol Ecol Resour 2010, 10:556鈥?57. CrossRef
    85. Wu TT, Kabat EA: An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. / J Exp Med 1970, 132:211鈥?50. CrossRef
    86. Jukes T, Cantor C: Evolution of protein molecules. In / Mammalian protein metabolism. Edited by: Munro H. New York: Academic Press; 1969:21鈥?32.
    87. Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. / Genetics 1998, 148:929鈥?36.
    88. Sommer S: The importance of immune gene variability (MHC) in evolutionary ecology and conservation. / Front Zool 2005, 2:16. CrossRef
    89. Satta Y, O鈥檋Uigin C, Takahata N, Klein J: Intensity of natural selection at the major histocompatibility complex loci. / Proc Nat Acad Sci USA 1994, 91:7184鈥?188. CrossRef
    90. Nishida S, Tachi T, Baba Y, Hayashi K, Kawanami N, Koike H: / DNA analysis of the Asiatic black bear in the Tohoku region using hair-trap samples. Report on model project of networking maintenance for habitat of wildlife. Wildlife Research Center, Tokyo: Japan; 2002. (in Japanese)
    91. Marsden CD, Woodroffe R, Mills MGL, McNutt JW, Creel S, Groom R, Emmanuel M, Cleaveland S, Kat P, Rasmussen GS, Ginsberg J, Lines R, Andr茅 JM, Begg C, Wayne RK, Mable BK: Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus). / Mol Ecol 2012, 21:1379鈥?393. CrossRef
    92. Castro-Prieto A, Wachter B, Sommer S: Cheetah paradigm revisited: MHC diversity in the world鈥檚 largest free-ranging population. / Mol Biol Evol 2011, 28:1455鈥?468. CrossRef
    93. Becker L, Nieberg C, Jahreis K, Peters E: MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)鈥揷onsequences for species conservation. / Immunogenetics 2009, 61:281鈥?88. CrossRef
    94. Niranjan SK, Deb SM, Kumar S, Mitra A, Sharma A, Sakaram D, Naskar S, Sharma D, Sharma SR: Allelic diversity at MHC class II DQ loci in buffalo (Bubalus bubalis): evidence for duplication. / Vet Immunol Immunopathol 2010, 138:206鈥?12. CrossRef
    95. Sena L, Schneider MPC, Brenig BB, Honeycutt RL, Honeycutt D, Womack JE, Skow LC: Polymorphism and gene organization of water buffalo MHC-DQB genes show homology to the BoLA DQB region. / Anim Genet 2011, 42:378鈥?85. CrossRef
    96. Diaz D, Naegeli M, Rodriguez R, Nino-Vasquez JJ, Moreno A, Patarroyo ME, Pluschke G, Daubenberger CA: Sequence and diversity of MHC DQA and DQB genes of the owl monkey Aotus nancymaae. / Immunogenetics 2000, 51:528鈥?37. CrossRef
    97. Meyer-Lucht Y, Sommer S: MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). / Mol Ecol 2005, 14:2233鈥?243. CrossRef
  • 作者单位:Yoshiki Yasukochi (1)
    Toshifumi Kurosaki (2)
    Masaaki Yoneda (2)
    Hiroko Koike (3)
    Yoko Satta (1)

    1. Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
    2. Japan Wildlife Research Center, 3-10-10 Shitaya, Taitou-ku, Tokyo, 110-8676, Japan
    3. The Kyushu University Museum, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka city, 812-8581, Japan
文摘
Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700