A Novel Strategy for the Preparation of Codon-Optimized Truncated Ulp1 and its Simplified Application to Cleavage the SUMO Fusion Protein
详细信息    查看全文
  • 作者:Xiaohua Wang ; Haifeng Liu ; Yawei Liu ; Yuting Li ; Lei Yan…
  • 关键词:Ubiquitin ; like protease 1 ; Expression ; Non ; fusion protein ; Purification ; Escherichia coli
  • 刊名:The Protein Journal
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:35
  • 期:2
  • 页码:115-123
  • 全文大小:2,236 KB
  • 参考文献:1.Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5:75–86CrossRef
    2.Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382CrossRef
    3.Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8:550–555CrossRef
    4.Spilka R, Ernst C, Mehta AK, Haybaeck J (2013) Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 340:9–21CrossRef
    5.Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, Yin QQ, Ma LN, Zhou AW, Wang LS, Yao M, Xia Q, Chen GQ (2014) Cbx4 governs HIF-1alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell 25:118–131CrossRef
    6.Subramonian D, Raghunayakula S, Olsen JV, Beningo KA, Paschen W, Zhang XD (2014) Analysis of changes in SUMO-2/3 modification during breast cancer progression and metastasis. J Proteome Res 13:3905–3918CrossRef
    7.Li SJ, Hochstrasser M (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160:1069–1081CrossRef
    8.Gao X, Chen W, Guo C, Qian C, Liu G, Ge F, Huang Y, Kitazato K, Wang Y, Xiong S (2010) Soluble cytoplasmic expression, rapid purification, and characterization of cyanovirin-N as a His-SUMO fusion. Appl Microbiol Biotechnol 85:1051–1060CrossRef
    9.Lu W, Cao P, Lei H, Zhang S (2010) High-level expression and purification of heparin-binding epidermal growth factor (HB-EGF) with SUMO fusion. Mol Biotechnol 44:198–203CrossRef
    10.Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189CrossRef
    11.Zuo X, Li S, Hall J, Mattern MR, Tran H, Shoo J, Tan R, Weiss SR, Butt TR (2005) Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J Struct Funct Genomics 6:103–111CrossRef
    12.Sun Z, Xia Z, Bi F, Liu JN (2008) Expression and purification of human urodilatin by small ubiquitin-related modifier fusion in Escherichia coli. Appl Microbiol Biotechnol 78:495–502CrossRef
    13.Zhang J, Lv X, Xu R, Tao X, Dong Y, Sun A, Wei D (2015) Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Appl Microbiol Biotechnol 99:6705–6713CrossRef
    14.Lee CD, Sun HC, Hu SM, Chiu CF, Homhuan A, Liang SM, Leng CH, Wang TF (2008) An improved SUMO fusion protein system for effective production of native proteins. Protein Sci 17:1241–1248CrossRef
    15.Carrington JC, Cary SM, Parks TD, Dougherty WG (1989) A second proteinase encoded by a plant potyvirus genome. EMBO J 8:365–370
    16.Vu TT, Koo BK, Song JA, Chong SH, Park CR, Nguyen MT, Jeong B, Ryu HB, Seong JY, Jang YJ, Robinson RC, Choe H (2015) Soluble overexpression and purification of bioactive human CCL2 in E. coli by maltose-binding protein. Mol Biol Rep 42:651–663CrossRef
    17.Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 31:1–11CrossRef
    18.Zhou L, Zhao Z, Li B, Cai Y, Zhang S (2009) TrxA mediating fusion expression of antimicrobial peptide CM4 from multiple joined genes in Escherichia coli. Protein Expr Purif 64:225–230CrossRef
    19.Travaglia A, Pietropaolo A, Di Martino R, Nicoletti VG, La Mendola D, Calissano P, Rizzarelli E (2015) A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem Neurosci 6:1379–1392CrossRef
    20.Sahoo SK, Shaikh SA, Sopariwala DH, Bal NC, Bruhn DS, Kopec W, Khandelia H, Periasamy M (2015) The N terminus of sarcolipin plays an important role in uncoupling sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) ATP hydrolysis from Ca2+ transport. J Biol Chem 290:14057–14067CrossRef
    21.Byrne AM, Elliott C, Hoffmann R, Baillie GS (2015) The activity of cAMP-phosphodiesterase 4D7 (PDE4D7) is regulated by protein kinase A-dependent phosphorylation within its unique N-terminus. FEBS Lett 589:750–755CrossRef
    22.Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9CrossRef
    23.Liew OW, Ching Chong JP, Yandle TG, Brennan SO (2005) Preparation of recombinant thioredoxin fused N-terminal proCNP: analysis of enterokinase cleavage products reveals new enterokinase cleavage sites. Protein Expr Purif 41:332–340CrossRef
    24.Zuo X, Mattern MR, Tan R, Li S, Hall J, Sterner DE, Shoo J, Tran H, Lim P, Sarafianos SG, Kazi L, Navas-Martin S, Weiss SR, Butt TR (2005) Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expr Purif 42:100–110CrossRef
    25.Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68CrossRef
    26.Fu J, Wang Q, Yin J, Liu M, Li N, Yao W, Ren G, Li L, Li D (2010) Expression and characterization of soluble recombinant Ulp1p with glutathione S-transferase tag in Escherichia coli. Sheng Wu Gong Cheng Xue Bao 26:837–842
    27.Wang X, Liu H, Zhang Z, Liu Y, Li Y, Gui J, Chu Y (2014) High-level expression and characterization of bioactive human truncated variant of hepatocyte growth factor in Escherichia coli. World J Microbiol Biotechnol 30:2851–2859CrossRef
    28.Valipour E, Moosavi ML, Amani J, Nazarian S (2014) High level expression, purification and immunogenicity analysis of a protective recombinant protein against botulinum neurotoxin type E. World J Microbiol Biotechnol 30:1861–1867CrossRef
    29.Yeh ET, Gong L, Kamitani T (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248:1–14CrossRef
    30.Lee JE, Kim JH (2015) SUMO modification regulates the protein stability of NDRG1. Biochem Biophys Res Commun 459:161–165CrossRef
    31.Ye T, Lin Z, Lei H (2008) High-level expression and characterization of an anti-VEGF165 single-chain variable fragment (scFv) by small ubiquitin-related modifier fusion in Escherichia coli. Appl Microbiol Biotechnol 81:311–317CrossRef
    32.Zhu F, Wang Q, Pu H, Gu S, Luo L, Yin Z (2013) Optimization of soluble human interferon-gamma production in Escherichia coli using SUMO fusion partner. World J Microbiol Biotechnol 29:319–325CrossRef
  • 作者单位:Xiaohua Wang (1) (2)
    Haifeng Liu (1)
    Yawei Liu (2)
    Yuting Li (2)
    Lei Yan (3)
    Xiaohuan Yuan (1)
    Yufei Zhang (1)
    Yan Wu (1)
    Jieting Liu (1)
    Chunlei Zhang (1)
    Yanhui Chu (1) (2)

    1. Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
    2. Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
    3. Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Biochemistry
    Organic Chemistry
    Animal Anatomy, Morphology and Histology
  • 出版者:Springer Netherlands
  • ISSN:1573-4943
文摘
Ubiquitin-like protease 1 (Ulp1) of Saccharomyces cerevisiae emerges as a fundamental tool to obtain the natural N-terminal target protein by cleavage of the small ubiquitin-related modifier (SUMO) fusion protein. However, the costly commercial Ulp1 and its complicated procedures limit its application in the preparation of the target protein with natural N-terminal sequence. Here, we describe the preparation of bioactive codon-optimized recombinant truncated Ulp1 (Leu403-Lys621) (rtUlp1) of S. cerevisiae in Escherichia coli using only one-step with Ni–NTA affinity chromatograph, and the application of rtUlp1 to cleave the SUMO fusion protein by simply mixing the purified rtUlp1, SUMO fusion protein and DL-Dithiothreitol in Tris–HCl buffer. The optimal expression level of non-fusion protein rtUlp1 accounts for approximately 50 % of the total cellular protein and 36 % of the soluble form by addition of isopropyl β-D-l-thiogalactopyranoside at a final concentration of 0.4 mM at 18 °C for 20 h. The purification of target protein rtUlp1 was conducted by Ni–NTA affinity chromatography. The final yield of rtUlp1 was 45 mg/l in flask fermentation with a purity up to 95 %. Furthermore, the high purity of rtUlp1 could effectively cleave the SUMO-tTβRII fusion protein (SUMO gene fused to truncated transforming growth factor-beta receptor type II gene) with the above simplified approach, and the specific activity of the rtUlp1 reached up to 2.8 × 104 U/mg, which is comparable to the commercial Ulp1. The preparation and application strategy of the rtUlp1 with commonly available laboratory resources in this study will be convenient to the cleavage of the SUMO fusion protein to obtain the natural N-terminal target protein, which can be implemented in difficult-to-express protein functional analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700