Investigating the possibility of a turning point in the dark energy equation of state
详细信息    查看全文
  • 作者:YaZhou Hu (1) (2)
    Miao Li (1) (3)
    XiaoDong Li (4)
    ZhenHui Zhang (1) (2)
  • 关键词:dark energy ; cosmology ; observational cosmology
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1607-1612
  • 全文大小:566 KB
  • 参考文献:1. Riess A G, Filippenko A V, Challis P, et al. Observational evidence from suprenovae for an accelerating universe and a cosmological constant. Astron J, 1998, 116: 1009-038 CrossRef
    2. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J, 1999, 517: 565-86 CrossRef
    3. Sahni V, Starobinsky A. The case for a positive cosmological lambdaterm. Int J Mod Phys D, 2000, 9: 373-44
    4. Peebles P J E, Ratra B. The cosmological constant and dark energy. Rev Mod Phys, 2003, 75: 559 CrossRef
    5. Frieman J, Turner M, Huterer D. Dark energy and the accelerating universe. Annu Rev Astron Astrophys, 2008, 46: 385-32 CrossRef
    6. Li M, Li X D, Wang S, et al. Dark Energy. Commun Theor Phys, 2011, 56: 525-04 CrossRef
    7. Peebles P J E, Yu J T. Primeval adiabatic perturbation in an expanding universe. Astrophys J, 1970, 162: 815-36 CrossRef
    8. Eisenstein D J, Hu W. Baryonic features in the matter transfer function. Astrophys J, 1998, 496: 605-14 CrossRef
    9. Anderson L, Aubourg E, Bailey S, et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the data release 10 and 11 galaxy samples. arXiv:1312.4877
    10. Kazin E A, Koda J, Blake C, et al. Improved WiggleZ dark energy survey distance measurements to / z = 1 with reconstruction of the baryonic acoustic feature. arXiv:1401.0358
    11. Eisenstein D J, Seo H J, Sirko E, et al. Improving cosmological distance measurements by reconstruction of the baryon acoustic peak. Astrophys J, 2007, 664: 675-79 CrossRef
    12. Chevallier M, Polarski D. Accelerating universes with scaling dark matter. Int J Mod Phys D, 2001, 10: 213-24 CrossRef
    13. Linder E V. Exploring the expansion history of the universe. Phys Rev Lett, 2003, 90: 091301 CrossRef
    14. Barreiro T, Copeland E J, Nunes N J. Quintessence arising from exponential potentials. Phys Rev D, 2000, 61: 127301 CrossRef
    15. Hu W, Sawicki I. Models of / f ( / R) cosmic acceleration that evade solar system tests. Phys Rev D, 2007, 76: 064004 CrossRef
    16. Starobinsky A A. Disappearing cosmological constant in / f ( / R) gravity. JETP Lett, 2007, 86: 157-63 CrossRef
    17. Appleby S A, Battye R A. Do consistent / F( / R) models mimic general relativity plus Λ? Phys Lett B, 2007, 654: 7-2 CrossRef
    18. Baldi M. Early massive clusters and the bouncing coupled dark energy. Mon Not R Astron Soc, 2012, 420: 430-40 CrossRef
    19. Li M, Ma Y Z, Zhang X, et al. Planck constraints on holographic dark energy. J Cosmol Astropart Phys, 2013, 09: 021 CrossRef
    20. Alam U, Sahni V, Saini T D, et al. Is there supernova evidence for dark energy metamorphosis? Mon Not R Astron Soc, 2004, 354: 275-91 CrossRef
    21. Zhao G B, Crittenden R G, Pogosian L, et al. Examining the evidence for dynamical dark energy. Phys Rev Lett, 2012, 109: 171301 CrossRef
    22. Holsclaw T, Alam U, Sansó B, et al. Nonparametric dark energy reconstruction from supernova data. Phys Rev Lett, 2010, 105: 241302 CrossRef
    23. Shafieloo A, Kim A G, Linder E V. Gaussian process cosmography. Phys Rev D, 2012, 85: 123530 CrossRef
    24. Seikel M, Clarkson C, Smith M. Reconstruction of dark energy and expansion dynamics using Gaussian processes. J Cosmol Astropart Phys, 2012, 1206: 036 CrossRef
    25. Crittenden R G, Zhao G B, Pogosian L, et al. Fables of reconstruction: Controlling bias in the dark energy equation of state. J Cosmol Astropart Phys, 1202, 2012: 048 CrossRef
    26. Wang F Y, Dai Z G. Estimating the uncorrelated dark energy evolution in the Planck era. Phys Rev D, 2014, 89: 023004 CrossRef
    27. Linder E V, Huterer D. How many dark energy parameters? Phys Rev D, 2005, 72: 043509 CrossRef
    28. Sarkar D, Sullivan S, Joudaki S, et al. Beyond two dark energy parameters. Phys Rev Lett, 2008, 100: 241302 CrossRef
    29. Komatsu E, Smith K M, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192: 18-4 CrossRef
    30. Guy J, Sullivan M, Conley A, et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints. Astron Astrophys, 2010, 523: A7 CrossRef
    31. Sullivan M, Guy J, Conley A, et al. SNLS3: Constraints on dark energy combining the supernova legacy survey three-year data with other probes. Astrophys J, 2011, 737: 102 CrossRef
    32. Conley A, Sullivan M, Hsiao E Y, et al. SiFTO: An empirical method for fitting SN Ia light curves. Astrophys J, 2008, 681: 482-98 CrossRef
    33. Guy J, Astier P, Baumont S, et al. SALT2: Using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron Astrophys, 2007, 466: 11-1 CrossRef
    34. Zhang Z H, Li M, Li X D, et al. Generalized holographic dark energy and its observational constraints. Mod Phys Lett A, 2012, 27: 1250115 CrossRef
    35. Hinshaw G, Larson D, Komatsu E, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys J Suppl, 2013, 208: 19 CrossRef
    36. Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. I. Overview of products and scientific results. arXiv:1303.5062
    37. Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076
    38. Wang Y, Wang S. Distance priors from Planck and dark energy constraints from current data. Phys Rev D, 2013, 88: 043522 CrossRef
    39. Hu W, Sugiyama N. Small-scale cosmological perturbations: An analytic approach. Astrophys J, 1996, 471: 542-70 CrossRef
    40. Beutler F, Blake C, Colless M, et al. The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant. Mon Not R Astron Soc, 2011, 416: 3017-032 CrossRef
    41. Eisenstein D J, Zehavi I, Hogg D W, et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560-74 CrossRef
    42. Addison G E, Hinshaw G, Halpern M. Cosmological constraints from baryon acoustic oscillations and clustering of large-scale structure. Mon Not R Astron Soc, 2013, 436: 1674-683 CrossRef
    43. Padmanabhan N, Xu X Y, Eisenstein D J, et al. A 2% distance to / z = 0.35 by reconstructing baryon acoustic oscillations—I: Methods and application to the Sloan Digital Sky Survey. Mon Not R Astron Soc, 2012, 427: 2132-145 CrossRef
    44. Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys J, 2011, 730: 119 CrossRef
    45. Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys Rev D, 2002, 66: 103511 CrossRef
    46. Felice A D, Nesseris S, Tsujikawa S. Observational constraints on dark energy with a fast varying equation of state. J Cosmol Astropart Phys, 2012, 1205: 029 CrossRef
  • 作者单位:YaZhou Hu (1) (2)
    Miao Li (1) (3)
    XiaoDong Li (4)
    ZhenHui Zhang (1) (2)

    1. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
    2. Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing, 100190, China
    3. School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou, 510275, China
    4. Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-Gu, Seoul, 130-722, Korea
  • ISSN:1869-1927
文摘
We investigate a second order parabolic parametrization, w(a) = w t + w a (a t ?a)2, which is a direct characterization of a possible turning in w. The cosmological consequence of this parametrization is explored by using the observational data of the SNLS3 type Ia supernovae sample, the CMB measurements from WMAP9 and Planck, the Hubble parameter measurement from HST, and the baryon acoustic oscillation (BAO) measurements from 6dFGS, BOSS DR11 and improved WiggleZ. We found the existence of a turning point in w at a ?0.7 is favored at 1σ CL. In the epoch 0.55 a w σ CL, and this significance increases near a = 0.8, reaching a 2σ CL. The parabolic parametrization achieve equivalent performance to the ΛCDM and Chevallier-Polarski-Linder (CPL) models when the Akaike information criterion was used to assess them. Our analysis shows the value of considering high order parametrizations when studying the cosmological constraints on w.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700