Formation of Peptide Radical Cations (M+·) in Electron Capture Dissociation of Peptides Adducted with Group IIB Metal Ions
详细信息    查看全文
  • 作者:Xiangfeng Chen (1)
    Wai Yi Kelly Chan (1)
    Pui Shuen Wong (1)
    Hoi Sze Yeung (1)
    Tak Wah Dominic Chan (1)
  • 关键词:Electron capture dissociation ; Peptides ; Group IIB transition metal ions ; Electron transfer
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2011
  • 出版时间:February 2011
  • 年:2011
  • 卷:22
  • 期:2
  • 页码:233-244
  • 全文大小:387KB
  • 参考文献:1. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. / J. Am. Chem. Soc. 120, 3265-266 (1998) CrossRef
    2. Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation for structural characterization of multiply charged protein cations. / Anal. Chem. 72, 563-73 (2000) CrossRef
    3. Adamson, J.T., H?kansson, K.: Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides. / J. Proteome Res. 5, 493-01 (2006) CrossRef
    4. Woodlin, R.L., Bomse, D.S., Beauchamp, J.L.: Multiphoton dissociation of molecules with low power continuous wave infrared laser radiation. / J. Am. Chem. Soc. 100, 3248-250 (1978) CrossRef
    5. Kjeldsen, F., Haselmann, K.F., Budnik, B.A., Sorensen, E.S., Zubarev, R.A.: Complete characterization of post-translational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. / Anal. Chem. 75, 2355-361 (2003) CrossRef
    6. Gauthier, J., Trautman, T.R., Jacobson, D.B.: Sustained off-resonance irradiation for collision-activated dissociation involving fourier transform mass spectrometry. collision-activated dissociation technique that emulates infrared multiphoton dissociation. / Anal. Chim. Acta 246, 211-25 (1991) CrossRef
    7. Jennings, K.R.: The changing impact of the collision-induced decomposition of ions on mass spectrometry. / Int. J. Mass Spectrom. 200, 479-93 (2000) CrossRef
    8. Shi, S.D.H., Hemling, M.E., Carr, S.A., Horn, D.M., Lindh, I., McLafferty, F.W.: Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. / Anal. Chem. 73, 19-2 (2001) CrossRef
    9. Kelleher, R.L., Zubarev, R.A., Bush, K., Furie, B., Furie, B.C., McLafferty, F.W., Walsh, C.T.: Localization of labile post-translational modifications by electron capture dissociation: The case of o-carboxyglutamic acid. / Anal. Chem. 71, 4250-253 (1999) CrossRef
    10. Hakansson, K., Cooper, H.J., Emmett, M.R., Costello, C.E., Marshall, A.G., Nilsson, C.L.: Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptide to yield complementary sequence information. / Anal. Chem. 73, 4530-536 (2001) CrossRef
    11. Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. / J. Am. Chem. Soc. 121, 2857-862 (1999) CrossRef
    12. McLafferty, F.W., Horn, D.M., Breuker, K., Ge, Y., Lewis, M.A., Cerda, B., Zubarev, R.A., Carpenter, B.K.: Electron capture dissociation of gaseous multiply charged ions by fourier-transform ion cyclotron resonance. / J. Am. Soc. Mass Spectrom. 12, 245-49 (2001) CrossRef
    13. Sawicka, A., Skurski, P., Hudgins, R.R., Simons, J.: Model calculations relevant to disulfide bond cleavage via electron capture influenced by positively charged groups. / J. Phys. Chem. B 107, 13505-3511 (2003) CrossRef
    14. Sobczyk, M., Anusiewicz, W., Berdys-Kochanska, J., Sawicka, A., Skurski, P., Simons, J.: Coulomb-assisted dissociative electron attachment: Application to a model peptide. / J. Phys. Chem. A 109, 250-58 (2005) CrossRef
    15. Sobczyk, M., Simons, J.: The role of excited rydberg states in electron transfer dissociation. / J. Phys. Chem. B 110, 7519-527 (2006) CrossRef
    16. Simons, J.: Mechanisms for S–S and N–Ca bond cleavage in peptide ECD and ETD mass spectrometry. / Chem. Phys. Lett. 484, 81-5 (2010) CrossRef
    17. Syrstad, E.A., Turecek, F.: Towards a general mechanism of electron capture dissociation. / J. Am. Soc. Mass Spectrom. 16, 208-24 (2005) CrossRef
    18. Jones, J.W., Sasaki, T., Goodlett, D.R., Turecek, F.: Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals. / J. Am. Soc. Mass Spectrom. 18, 432-44 (2007) CrossRef
    19. Turecek, F., Chen, X.H., Hao, C.T.: Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase. / J. Am. Chem. Soc. 130, 8818-833 (2008) CrossRef
    20. Li, X., Cournoyer, J.J., Lin, C., O’Connor, P.B.: The effect of fixed charge modifications on electron capture dissociation. / J. Am. Soc. Mass Spectrom. 19, 1514-526 (2008) CrossRef
    21. Chamot-Rooke, J., Rest, G., Dalleu, A., Bay, S., Lemoine, J.: The combination of electron capture dissociation and fixed charge derivatization increases sequence coverage for o-glycosylated and o-phosphorylated peptides. / J. Am. Soc. Mass Spectrom. 18, 1405-413 (2007) CrossRef
    22. Jensen, C.S., Holm, A.I.S., Zettergren, H., Overgaard, J.B., Hvelplund, P., Nielsen, S.B.: On the charge partitioning between / c and / z fragments formed after electron-capture induced dissociation of charge-tagged Lys-Lys and Ala-Lys dipeptide dications. / J. Am. Soc. Mass Spectrom. 20, 1881-889 (2009) CrossRef
    23. Chamot-Rooke, J., Malosse, C., Frison, G., Ture?ek, F.: Electron capture in charge-tagged peptides. Evidence for the role of excited electronic states. / J. Am. Soc. Mass Spectrom. 18, 2146-121 (2007) CrossRef
    24. Liu, H.C., H?kansson, K.: Electron capture dissociation of tyrosine o-sulfated peptides complexed with divalent metal cations. / Anal. Chem. 78, 7570-576 (2006) CrossRef
    25. Liu, H.C., Yoo, H.J., H?kansson, K., Lee, J.Y., Sherman, D.H.: Collision-activation dissociation, infrared multiphoton dissociation, and electron capture dissociation of the / Bacillus anthracis siderophore petrobacin and its metal ion complexes. / J. Am. Soc. Mass Spectrom. 18, 842-49 (2007) CrossRef
    26. Liu, H.C., Yoo, H.J., H?kansson, K.: Characterization of phosphate-containing metabolites by calcium adduction and electron capture dissociation. / J. Am. Soc. Mass Spectrom. 19, 799-08 (2008) CrossRef
    27. Adamson, J.T., H?kansson, K.: Electron capture dissociation of oligosaccharides ionized with alkali, alkaline earth, and transition metals. / Anal. Chem. 79, 2901-910 (2006) CrossRef
    28. James, P.F., Perugini, M.A., O’Hair, R.A.J.: Electron capture dissociation of complexes of diacylglycerophosphocholine and divalent metal ions: competition between charge reduction and radical induced phospholipid fragmentation. / J. Am. Soc. Mass Spectrom. 19, 978-86 (2008) CrossRef
    29. Kaczorowska, M.A., Hotze, A.C.G., Hannon, M.J., Cooper, H.J.: Electron capture dissociation mass spectrometry of metallo-supramolecular complexes. / J. Am. Soc. Mass Spectrom. 21, 300-09 (2010) CrossRef
    30. Kaczorowska, M.A., Cooper, H.J.: Electron capture dissociation and collision-induced dissociation of metal ion [Ag(+), Cu(2+), Zn(2+), Fe(2+), and Fe(3+)] Complexes of polyamidoamine (PAMAM) dendrimers. / J. Am. Soc. Mass Spectrom. 20, 674-81 (2009) CrossRef
    31. Iavarone, A.T., Paech, K., Williams, E.R.: Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. / Anal. Chem. 76, 2231-238 (2004) CrossRef
    32. Fung, Y.M.E., Liu, H., Chan, T.W.D.: Electron capture dissociation of peptides metalated with alkaline-earth metal ions. / J. Am. Soc. Mass Spectrom. 17, 757-71 (2006) CrossRef
    33. Kleinnijenhuis, A.J., Mihalca, R., Heeren, R.M.A., Heck, A.J.R.: Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin. / Int. J. Mass Spectrom. 253, 217-24 (2006) CrossRef
    34. Liu, H.C., H?kansson, K.: Divalent metal ion-peptide interactions probed by electron capture dissociation of trications. / J. Am. Soc. Mass Spectrom. 17, 1731-741 (2006) CrossRef
    35. Yuril, B.E.V., Palmblad, M., Dallebout, H., Heeren, R.M.A.: Electron capture dissociation of peptide hormone changes upon opening of the tocin ring and complexation with transition metal cations. / Rapid Commun. Mass Spectrom. 23, 31-8 (2009) CrossRef
    36. Turecek, F., Jones, J.W., Holm, A.I.S., Panja, S., Nielsen, S.B., Hvelplund, P.: Transition metals as electron traps. I. Structures, energetics, electron capture, and electron-transfer-induced dissociations of ternary copper–peptide complexes in the gas phase. / J. Mass Spectrom. 44, 707-25 (2009) CrossRef
    37. Turecek, F., Jones, J.W., Holm, A.I.S., Panja, S., Nielsen, S.B., Hvelplund, P.: Transition metals as electron traps. II. Structures, energetics, and electron transfer dissociations of ternary Co, Ni, and Zn–peptide complexes in the gas phase. / J. Mass Spectrom. 44, 1518-531 (2009) CrossRef
    38. Zubarev, R.A., Haselmann, K.F., Budnik, B., Kjeldsen, F., Jensen, F.: Towards an understanding of the mechanism of electron-capture dissociation: a historical perspective and modern ideas. / Eur. J. Mass Spectrom. 8, 337-49 (2002) CrossRef
    39. Weast, R.C. (ed.). CRC handbook of chemistry and physics (67th ed.); Boca Raton, FL. CRC Press: E-76-77 (1987).
    40. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. / Acta Crystallogr. A 32, 751-67 (1976) CrossRef
    41. Lau, R.L.C., Jiang, J.Z., Ng, D.K.P., Chan, T.W.D.: Fourier transform ion cyclotron resonance studies of lanthanide(III) porphyrin-phthalocyanine heteroleptic sandwich complexes by using electrospray ionization. / J. Am. Soc. Mass Spectrom. 8, 161-69 (1997) CrossRef
    42. Fong, K.W.Y., Chan, T.W.D.: A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. / J. Am. Soc. Mass Spectrom. 10, 72-5 (1999) CrossRef
    43. Chan, T.W.D., Duan, L., Sze, T.P.: Accurate mass measurements for peptide and protein mixtures by using matrix-assisted laser desorption/ionization fourier transform mass spectrometry. / Anal. Chem. 74, 5282-289 (2002) CrossRef
    44. Chan, T.W.D., Ip, W.H.H.: Optimization of experimental parameters for electron capture dissociation of peptides in a fourier transform mass spectrometer. / J. Am. Soc. Mass Spectrom. 13, 1396-406 (2002) CrossRef
    45. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven Jr., T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision D.01. Gaussian, Inc, Wallingford CT (2004)
    46. Becke, A.D.A.: New mixing of hartree-fock and local density-functional theories. / J. Chem. Phys. 98, 1372-377 (1993) CrossRef
    47. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. / J. Chem. Phys. 98, 5648-652 (1993) CrossRef
    48. Lee, C., Yang, W., Parr, R.C.: Development of the colle-salvetti correction-energy formula into a function of the electron density. / Phys. Rev. B 37, 785-89 (1988) CrossRef
    49. Hay, P.J., Wadt, W.R.: Ab intio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. / J. Chem. Phys. 82, 270-83 (1985) CrossRef
    50. Wadt, W.R., Hay, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. / J. Chem. Phys. 82, 284-98 (1985) CrossRef
    51. Hay, P.J., Wadt, W.R.: Ab intio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. / J. Chem. Phys. 82, 299-10 (1985) CrossRef
    52. Hopkinson, A.C.: Radical cations of amino acids and peptides: structures and stabilities. / Mass Spectrom. Rev. 28, 655-71 (2009) CrossRef
    53. Wee, S., O’Hair, R.A.J., McFadyen, W.D.: Comparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptide GXR. / Int. J. Mass Spectrom. 234, 101-22 (2004) CrossRef
    54. Wee, S., O’Hair, R.A.J., McFadyen, W.D.: The role of the position of the basic residue in the generation of peptide radical cations. / Int. J. Mass Spectrom. 249, 171-83 (2006) CrossRef
    55. Chu, I.K., Lam, C.N.W.: Generation of peptide radical dications via low-energy collision-induced dissociation of [CuII(terpy)(M-?H)]3+. / J. Am. Soc. Mass Spectrom. 16, 1795-804 (2005) CrossRef
    56. Deery, M.J., Summerfield, S.G., Buzy, A.B., Jennings, K.R.: A mechanism for the loss of 60 u from peptides containing an arginine residue at the C-terminus. / J. Am. Soc. Mass Spectrom. 8, 253-61 (1997) CrossRef
    57. Millefiori, S., Alparone, A., Millefiori, A., Vanella, A.: Electronic and vibrational polarizabilities of the 20 naturally occurring amino acids. / Biophys. Chem. 132, 139-47 (2008) CrossRef
    58. Wesendrup, R., Schalley, C.A., Schr?der, D., Schwarz, H.: Bimolecular gas-phase reactions of d-block transition-metal cations with dimethyl peroxide: trends across the periodic table. / Chem. Eur. J. 1, 608-13 (1995) CrossRef
    59. Caraiman, D., Koyanagi, G.K., Bohme, D.K.: Gas-phase reactions of transition-metal ions with hexafluorobenzene: room-temperature kinetics and periodicities in reactivity. / J. Phys. Chem. A 108, 978-86 (2004) CrossRef
    60. Koyanagi, G.K., Bohme, D.K.: Kinetics and thermodynamics for the bonding of benzene to 20 main-group atomic cations: formation of half-sandwiches, full-sandwiches, and beyond. / Int. J. Mass Spectrom. 227, 563-75 (2003) CrossRef
    61. Zhao, X., Flaim, E., Huynh, L., Jarvis, M.J.Y., Cheng, P., Lavrov, V.V., Blagojevic, V., Koyanagi, G.K., Bohme, D.K.: Electron transfer and ligand addition to atomic mercury cations in the gas phase: kinetic and equilibrium studies at 295?K. / Inorg. Chem. 45, 9646-653 (2006) CrossRef
    62. Ling, S., Yu, W., Huang, Z., Lin, Z., Haranczyk, M., Gutowski, M.: Gaseous arginine conformers and their unique intramolecular interactions. / J. Phys. Chem. A 110, 12282-2291 (2006) CrossRef
    63. Sovago, I., Osz, K.: Metal ion selectivity of oligopeptides. / Dalton Trans., 3841-854 (2006).
    64. Sigel, H., Martin, R.B.: Coordinating properties of the amide bond-stability and structure of metal–ion complexes of peptides and related ligands. / Chem. Rev. 82, 385-26 (1982) CrossRef
    65. Wong, C.K.L., Chan, T.W.D.: Cationization processes in matrix-assisted laser desorption/ionization mass spectrometry: attachment of divalent and trivalent metal ions. / Rapid Commun. Mass Spectrom. 11, 513-19 (1997) CrossRef
    66. Rulisek, L., Vondrasek, J.: Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. / J. Inorg. Biochem. 71, 115-27 (1998) CrossRef
  • 作者单位:Xiangfeng Chen (1)
    Wai Yi Kelly Chan (1)
    Pui Shuen Wong (1)
    Hoi Sze Yeung (1)
    Tak Wah Dominic Chan (1)

    1. Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
文摘
Peptides adducted with different divalent Group IIB metal ions (Zn2+, Cd2+, and Hg2+) were found to give very different ECD mass spectra. ECD of Zn2+ adducted peptides gave series of c-/z-type fragment ions with and without metal ions. ECD of Cd2+ and Hg2+ adducted model peptides gave mostly a-type fragment ions with M+-/sup> and fragment ions corresponding to losses of neutral side chain from M+-/sup>. No detectable a-ions could be observed in ECD spectra of Zn2+ adducted peptides. We rationalized the present findings by invoking both proton-electron recombination and metal-ion reduction processes. As previously postulated, divalent metal-ions adducted peptides could adopt several forms, including (a) [M + Cat]2+, (b) [(M + Cat -H) + H]2+, and (c) [(M + Cat -2H) + 2H]2+. The relative population of these precursor ions depends largely on the acidity of the metal–ion peptide complexes. Peptides adducted with divalent metal-ions of small ionic radii (i.e., Zn2+) would form predominantly species (b) and (c); whereas peptides adducted with metal ions of larger ionic radii (i.e., Hg2+) would adopt predominantly species (a). Species (b) and (c) are believed to be essential for proton-electron recombination process to give c-/z-type fragments via the labile ketylamino radical intermediates. Species (c) is particularly important for the formation of non-metalated c-/z-type fragments. Without any mobile protons, species (a) are believed to undergo metal ion reduction and subsequently induce spontaneous electron transfer from the peptide moiety to the charge-reduced metal ions. Depending on the exothermicity of the electron transfer reaction, the peptide radical cations might be formed with substantial internal energy and might undergo further dissociation to give structural related fragment ions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700