Classification and Prediction by LF NMR
详细信息    查看全文
  • 作者:Xiaolong Shao (12)
    Yunfei Li (23) yfli@sjtu.edu.cn
  • 关键词:Food processing – ; Quality control – ; Classification – ; Prediction – ; PLS – ; Low field NMR
  • 刊名:Food and Bioprocess Technology
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:5
  • 期:5
  • 页码:1817-1823
  • 全文大小:291.9 KB
  • 参考文献:1. Abu-Ghannam, N., & Crowley, H. (2006). The effect of low temperature blanching on the texture of whole processed new potatoes. Journal of Food Engineering, 74(3), 335–344.
    2. American Oil Chemists’ Society (1993). Solid fat content (SFC) by low resolution magnetic resonance—The direct method for additional information on standard sample preparation and tempering techniques. Urbana: American Oil Chemists’ Society.
    3. American Oil Chemists’ Society (1995). Oilseeds—Simultaneous determination of oil and water contents—Method using pulsed nuclear magnetic resonance spectrometry. Urbana: American Oil Chemists’ Society.
    4. Anastasiadi, M., Zira, A., Magiatis, P., Haroutounian, S. A., Skaltsounis, A. L., & Mikros, E. (2009). H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. comparison with HPLC data. Journal of Agricultural and Food Chemistry, 57(23), 11067–11074.
    5. Andrade, L., Farhat, I. A., Aeberhardt, K., Normand, V., & Engelsen, S. B. (2008). Characterization of encapsulated flavor systems by NIR and low-field TD-NMR: A chemometric approach. Food Biophysics, 3(1), 33–47.
    6. Aursand, I. G., Gallart-Jornet, L., Erikson, U., Axelson, D. E., & Rustad, T. (2008). Water distribution in brine salted cod (Gadus morhua) and salmon (Salmo salar): A low-field 1H NMR study. Journal of Agricultural and Food Chemistry, 56(15), 6252–6260.
    7. Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173.
    8. Barrett, D. M., Garcia, E. L., Russell, G. F., Ramirez, E., & Shirazi, A. (2000). Blanch time and cultivar effects on quality of frozen and stored corn and broccoli. Journal of Food Science, 65(3), 534–540.
    9. Brescia, M. A., Kosir, I. J., Caldarola, V., Kidric, J., & Saccos, A. (2003). Chemometric classification of Apulian and Slovenian wines using 1H NMR and ICP-OES together with HPICE data. Journal of Agricultural and Food Chemistry, 51(1), 21–26.
    10. Butz, P., Hofmann, C., & Tauscher, B. (2005). Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. Journal of Food Science, 70(9), 131.
    11. Canet, W., Alvarez, M. D., Luna, P., Fern Ndez, C., & Tortosa, M. E. (2005). Blanching effects on chemistry, quality and structure of green beans (cv. Moncayo). European Food Research and Technology, 220(3), 421–430.
    12. Carr, H. Y., & Purcell, E. M. (1954). Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review, 94(3), 630–638.
    13. Davenel, A., Pouvreau, S., Cambert, M., Suquet, M., & Mariette, F. (2009). NMR relaxometry as a potential non-invasive routine sensor for characterization of phenotype in Crassostrea gigas. Aquaculture, 291(1–2), 74–77.
    14. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.
    15. Ghosh, S., & Tombokan, X. (2009). TD-NMR technology: a noninvasive tool for high-throughput QC and rapid cereal product improvement. Cereal Foods World, 54(4), 152–157.
    16. Guthausen, G., Todt, H., Burk, W., Schmalbein, D., & Kamlowski, A. (2006). Time-domain NMR in quality control: more advanced methods. In G. A. Webb (Ed.), Modern magnetic resonance (pp. 1735–1738). Dordrecht: Springer.
    17. Hills, B. P. (2006). Applications of low-field NMR to food science. Annual Reports on NMR Spectroscopy, 58, 177–230.
    18. Jepsen, S. M., Pedersen, H. T., & Engelsen, S. B. (1999). Application of chemometrics to low-field 1H NMR relaxation data of intact fish flesh. Journal of the Science of Food and Agriculture, 79(13), 1793–1802.
    19. Liu, Y., & Rayens, W. (2007). PLS and dimension reduction for classification. Computational Statistics, 22(2), 189–208.
    20. Lolli, M., Bertelli, D., Plessi, M., Sabatini, A. G., & Restani, C. (2008). Classification of Italian honeys by 2D HR-NMR. Journal of Agricultural and Food Chemistry, 56(4), 1298–1304.
    21. Maheswari, M., Joshi, D. K., Saha, R., Nagarajan, S., & Gambhir, P. N. (1999). Transverse relaxation time of leaf water protons and membrane injury in wheat (Triticum aestivum L.) in response to high temperature. Annals of Botany, 84(6), 741.
    22. Mannina, L., D’Imperio, M., Capitani, D., Rezzi, S., Guillou, C., Mavromoustakos, T., et al. (2009). 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil. Journal of Agricultural and Food Chemistry, 57(24), 11550–11556.
    23. Marini, F. (2010). Classification methods in chemometrics. Current Analytical Chemistry, 6(1), 72–79.
    24. Meiboom, S., & Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. The Review of Scientific Instruments, 29(8), 688–691.
    25. Munck, L. N., Rgaard, L., Engelsen, S. B., Bro, R., & Andersson, C. A. (1998). Chemometrics in food science—A demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 31–60.
    26. Nagarajan, S., Joshi, D. K., Anand, A., Verma, A. P. S., & Pathak, P. C. (2005). Proton NMR transverse relaxation time and membrane stability in wheat leaves exposed to high temperature shock. Indian Journal of Biochemistry & Biophysics, 42, 122–126.
    27. Preda, C., Saporta, G., & Lvder, C. (2007). PLS classification of functional data. Computational Statistics, 22(2), 223–236.
    28. Rezzi, S., Giani, I. H., Berger, K., Axelson, D. E., Moretti, V. M., Reniero, F., et al. (2007). Classification of gilthead sea bream (Sparus aurata) from 1H NMR lipid profiling combined with principal component and linear discriminant analysis. Journal of Agricultural and Food Chemistry, 55(24), 9963–9968.
    29. Rosipal, R., & Kr盲mer, N. (2006). Overview and recent advances in partial least squares. In C. Saunders et al. (Eds.), Subspace, latent structure and feature selection (pp. 34–51). Heidelberg: Springer.
    30. Scotter, C. N. G. (1997). Non-destructive spectroscopic techniques for the measurement of food quality. Trends in Food Science and Technology, 8(9), 285–292.
    31. Shao, X.-L., & Li, Y.-F. (2009). Effects of blanching on water distribution and water status in sweet corn investigated by using MRI and NMR. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 25(10), 302–306.
    32. Thybo, A. K., Bechmann, I. E., Martens, M., & Engelsen, S. B. (2000). Prediction of sensory texture of cooked potatoes using uniaxial compression, near infrared spectroscopy and low field1H NMR spectroscopy. Lebensmittel-Wissenschaft und Technologie, 33(2), 103–111.
    33. Thygesen, L. G., Thybo, A. K., & Engelsen, S. B. (2001). Prediction of sensory texture quality of boiled potatoes from low-field 1H NMR of raw potatoes. The role of chemical constituents. Lebensmittel-Wissenschaft und-Technologie, 34(7), 469–477.
    34. Todt, H., Burk, W., Guthausen, G., Guthausen, A., Kamlowski, A., & Schmalbein, D. (2001). Quality control with time-domain NMR. European Journal of Lipid Science and Technology, 103(12), 835–840.
    35. Todt, H., Guthausen, G., Burk, W., Schmalbein, D., & Kamlowski, A. (2006a). Time-domain NMR in quality control: standard applications in food. In G. A. Webb (Ed.), Modern magnetic resonance (pp. 1739–1743). Dordrecht: Springer.
    36. Todt, H., Guthausen, G., Burk, W., Schmalbein, D., & Kamlowski, A. (2006b). Water/moisture and fat analysis by time-domain NMR. Food Chemistry, 96(3), 436–440.
    37. Valous, N. A., Mendoza, F., & Sun, D. W. (2009). Emerging non-contact imaging, spectroscopic and colorimetric technologies for quality evaluation and control of hams: a review. Trends in Food Science and Technology, 21(1), 26–43.
    38. Viereck, N. N., Rgaard, L., Bro, R., & Engelsen, S. B. (2008). Chemometric analysis of NMR data. In G. A. Webb (Ed.), Modern magnetic resonance. Dordrecht: Springer.
    39. Vigli, G., Philippidis, A., Spyros, A., & Dais, P. (2003). Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. Journal of Agricultural and Food Chemistry, 51(19), 5715–5722.
  • 作者单位:1. Institute of Refrigeration and Cryogenic Engineering, School of Power and Energy Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China2. Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China3. Bor.S.Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Agriculture
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1935-5149
文摘
The classification analysis and firmness prediction of sweet corn subjected to different treatments were investigated to develop the potential application of low field nuclear magnetic resonance for food quality control. Principal component analysis (PCA) was firstly used for exploiting the invisible changes of the internal characteristics of blanched sweet corn. Then, two classification methods involving regression analysis in combination with linear discriminant analysis (LDA), which is based on data compression technology (PCA and partial least squares, PLS), were compared. The PCA score plots clearly showed that the samples varied according to the temperature of the treatment. For the goal of classification, the principal components extracted from the PLS analysis were more useful than those obtained from PCA. Cross validation was helpful to determine the appropriate number of principal components. In fact, it proved that PLS combined with LDA yielded the highest success classification rate (94.3%), and PLS also performed well in firmness prediction of processed sweet corn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700