Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum
详细信息    查看全文
  • 作者:Rili Xie ; Yanbing Shen ; Ning Qin ; Yibo Wang
  • 关键词:Mycobacterium neoaurum ; 3 ; ketosteroid ; Δ1 ; dehydrogenase ; Biotransformation ; Androst ; 4 ; ene ; 3 ; 17 ; dione ; Androst ; 1 ; 4 ; diene ; 3 ; 17 ; dione
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:42
  • 期:4
  • 页码:507-513
  • 全文大小:557 KB
  • 参考文献:1. Adham, NZ, EI-Hady, AA, Naim, N (2003) Biochemical studies on the microbial Δ1-dehydrogenation of cortisol by Pseudomonas fluorescens. Process Biochem 38: pp. 897-902 CrossRef
    2. Bragin, EY, Shtratnikova, VY, Dovbnya, DV, Schelkunov, MI, Pekov, YA, Malakho, SG, Egorova, OV, Ivashina, TV, Sokolov, SL, Ashapkin, VV, Donova, MV (2013) Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. Strains. J Steroid Biochem 138: pp. 41-53 CrossRef
    3. Brzostek, A, Sliwinski, T, Rumijowska-Galewicz, A, Korycka-Machala, M, Dziadek, J (2005) Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. Microbiology 151: pp. 2393-2402 CrossRef
    4. Donova, MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Micro 43: pp. 1-14 CrossRef
    5. Fernandes, P, Cruz, A, Angelova, B, Pinheiro, HM, Cabral, JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Tech 32: pp. 688-705 CrossRef
    6. Fokina, VV, Karpov, AV, Sidorov, IA, Andrjushina, VA, Arinbasarova, AY (1997) The influence of β-cyclodextrin on the kinetics of 1-en-dehydrogenation of 6α-methylhydro cortisone by Arthrobacter globiformis cells. Appl Microbiol Biot 47: pp. 645-649 CrossRef
    7. Fujii, C, Morii, S, Kadode, M, Sawamoto, S, Iwami, M, Itagaki, E (1999) Essential tyrosine residues in 3-ketosteroid-Δ1-dehydrogenase from Rhodococcus rhodochrous. J Biochem 126: pp. 662-667 CrossRef
    8. Geize, R, Hessels, GI, Grommen, R, Vrijbloed, JW, Meijden, P, Dijkhuizen, L (2000) Targeted disruption of the kstD gene encoding a 3-ketosteroid Δ1-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl Environ Microb 66: pp. 2029-2036 CrossRef
    9. Geize, R, Hessels, GI, Dijkhuizen, L (2002) Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Δ1-dehydrogenase isoenzyme. Microbiology 148: pp. 3285-3292
    10. Knol, J, Bodewits, K, Hessels, GI, Dijkhuizen, L, Geize, R (2008) 3-Keto-5α-steroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J 410: pp. 339-346 CrossRef
    11. Li, Y, Lu, F, Sun, T, Du, L (2007) Expression of ksdD gene encoding 3-ketosteroid-Δ1-dehydrogenase from Arthrobacter simplex in Bacillus subtilis. Lett Appl Microbiol 44: pp. 563-568 CrossRef
    12. Matsushita, H, Itagaki, E (1992) Essential histidine residue in 3-ketosteroid-Δ1-dehydrogenase. J Biochem 111: pp. 594-599
    13. Molnar, I, Choi, KP, Yamashita, M, Murooka, Y (1995) Molecular cloning, expression in Streptomyces livdans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-Δ1-dehydrogenase, 3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein. Mol Microbiol 15: pp. 895-905 CrossRef
    14. Oosterwijk, N, Knol, J, Dijkhuizen, L, Geize, R, Dijkstra, BW (2012) Structure and catalytic mechanism of 3-ketosteroid-Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1 genome. J Biol Chem 287: pp. 30975-30983 CrossRef
    15. Oosterwijk, N, Knol, J, Dijkhuizen, L, Geize, R, Dijkstra, BW (2011) Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1. Acta Crystallogr F 67: pp. 1269-1273
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
Mycobacterium neoaurum TCCC 11028 (MNR) and M. neoaurum TCCC 11028 M3 (MNR M3) significantly differ in the ratio of androst-1,4-diene-3,17-dione (ADD) to androst-4-ene-3,17-dione (AD) produced. The large fluctuations are related to the dehydrogenation activity of 3-ketosteroid-Δ1-dehydrogenase (KsdD). Analysis of the primary structure of KsdD showed that the Ser-138 of KsdD-MNR changed to Leu-138 of KsdD-MNR M3 because of C413T in the ksdD gene. This phenomenon directly affected KsdD activity. The effect of the primary structure of KsdD on dehydrogenation activity was confirmed through exogenous expression. Whole-cell transformation initially revealed that KsdD-MNR showed a higher dehydrogenation activity than KsdD-MNR M3. Then, ksdD gene replacement strain was constructed by homologous recombination. The results of steroid transformation experiments showed that the ability of the MNR M3ΔksdD::ksdD-MNR strain to produce ADD was improved and it returned to the similar level of the MNR strain. This result indicated that the ADD/AD ratio of the two M. neoaurum strains was influenced by the difference in ksdD. The mechanism by which residue mutations alter enzyme activity may be connected with the crystal structure of KsdD from Rhodococcus erythropolis SQ1. As a key amino acid residue in the active center position, Ser-138 played an important role in maintaining the active center in the hydrophobic environment of KsdD. This study may serve as a basis for future studies on the structural analysis and catalytic mechanism of dehydrogenase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700