A novel approach for improving the yield of Bacillus subtilis transglutaminase in heterologous strains
详细信息    查看全文
  • 作者:Yihan Liu (1)
    Song Lin (1)
    Xiqing Zhang (1)
    Xiaoguang Liu (1)
    Jianling Wang (1)
    Fuping Lu (1) (2)
  • 关键词:Transglutaminase ; Bacillus subtilis ; Propeptide ; Fusion protein ; Secretion expression
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:41
  • 期:8
  • 页码:1227-1235
  • 全文大小:722 KB
  • 参考文献:1. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganism. Agric Biol Chem 53:2613-617 CrossRef
    2. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2004) High level expression of / Streptomyces mobaraensis transglutaminase in / Corynebacterium glutamicum using a chimeric propeptide from / Streptomyces cinnamoneus transglutaminase. J Biotechnol 110:219-26 CrossRef
    3. Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517-31 CrossRef
    4. Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13-8 CrossRef
    5. Ikura K, Sasaki R, Motoki M (1992) Use of transglutaminase in quality-improvement and processing of food proteins. Comments Agric Food Chem 2:389-07
    6. Itaya H, Kikuchi Y (2008) Secretion of / Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl Microbiol Biotechnol 78:621-25 CrossRef
    7. Jaros D, Partschefeld C, Henle T, Rohm H (2006) Transglutaminase in dairy products: chemistry, physics, applications. J Texture Stud 37:113-55 CrossRef
    8. Kikuchi Y, Date M, Yokoyama K, Umezawa Y (2003) Secretion of active-form / Streptoverticillium mobaraense Transglutaminase by / corynebacterium glutamicum: processing of the Pro-transglutaminase by a cosecreted subtilisin-like protease from / Streptomyces albogriseolus. Appl Environ Microb 69:358-66 CrossRef
    9. Kobayashi K, Kumazawa Y, Miwa K, Yamanaka S (1996) ε-(γ-Glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in / Bacillus subtilis. FEMS Microbiol Lett 144:157-60
    10. Kobayashi K, Hashiguchi K, Yokozeki K, Yamanaka S (1998) Molecular cloning of the transglutaminase gene from / Bacillus subtilis and its expression in / Escherichia coli. Biosci Biotechnol Biochem 62:1109-114 CrossRef
    11. Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matui H, Suzuki E (2002) Crystal structure of microbial transglutaminase from / Streptoverticillium mobaraense. J Biol Chem 277:44252-4260 CrossRef
    12. Liu XQ, Yang XQ, Xie FH, Song LY, Zhang GQ, Qian SJ (2007) On-column refolding and purification of transglutaminase from / Streptomyces fradiae expressed as inclusion bodies in / Escherichia coli. Protein Expr Purif 51:179-86 CrossRef
    13. Mariniello L, Porta R (2005) Transglutaminases as biotechnological tools. Prog Exp Tumor Res 38:174-91 CrossRef
    14. Motoki M, Nio N (1983) Cross-linking between different food proteins by transglutaminase. J Food Sci 48:561-66 CrossRef
    15. Motoki M, Seguro K (1998) Transglutaminase and its use for food processing. Trends Food Sci Technol 9:204-10 CrossRef
    16. Marx CK, Hertel TC, Pietzsch M (2007) Soluble expression of a pro-transglutaminase from / Streptomyces mobaraensis in / Escherichia coli. Enzyme Microb Tech 40:1543-550 CrossRef
    17. Pasternack R, Dorsch S, Otterbach JT, Robenek IR, Wolf S, Fuchsbauer HL (1998) Bacterial pro-transglutaminases from / Streptoverticillium mobaraense–Purification, characterization and sequence of the zymogen. Eur J Biochem 257:570-76 CrossRef
    18. Placido D, Fernandes CG, Isidro A, Carrondo MA, Henriques AO, Archer M (2008) Auto-induction and purification of a / Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expr Purif 59:1- CrossRef
    19. Ragkousi K, Setlow P (2004) Transglutaminase-mediated cross-linking of GerQ in the coats of / Bacillus subtilis spores. J Bacteriol 186:5567-575 CrossRef
    20. Suzuki S, Izawa Y, Kobayashi K, Eto Y, Yamanaka S, Kubota K, Yokozeki K (2000) Purification and characterization of novel transglutaminase from / Bacillus subtilis spores. Biosci Biotechnol Biochem 64:2344-351 CrossRef
    21. Takehana S, Washizu K, Ando K, Koikeda S, Takeuchi K, Matsui H, Motoki M, Takagi H (1994) Chemical synthesis of the gene for microbial transglutaminase from / Streptoverticillium and its expression in / Escherichia coli. Biosci Biotechnol Biochem 58:88-2 CrossRef
    22. Takagi J, Saito Y, Kikuchi T, Inada Y (1986) Modification of transglutaminase assay: use of ammonium sulfate to stop the reaction. Anal Biochem 153:295-98 CrossRef
    23. Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of / Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541-45 CrossRef
    24. Washizu KK, Ando S, Koikeda S, Hirose A, Matsuura H, Takagi M, Takeuchi K, Motoki (1994) Molecular cloning of the gene for microbial transglutaminase from / Streptoverticillium and its expression in / Streptomyces lividans. Biosci Biotechnol Biochem 58:82-7 CrossRef
    25. Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H (2010) Scanning the / Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155:741-50 CrossRef
    26. Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447-54 CrossRef
    27. Yurimoto H, Yamane M, Kikuchi Y, Matsui H, Kato N, Sakai Y (2004) The pro-peptide of / Streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci Biotechnol Biochem 68:2058-069 CrossRef
    28. Yokoyama KI, Nakamura N, Seguro K, Kubota K (2000) Overproduction of microbial transglutaminase in / Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64:1263-270 CrossRef
    29. Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26:559-65 CrossRef
    30. Zilh?o R, Isticato R, Martins LO, Steil L, V?lker U, Ricca E, Moran CP Jr, Henriques AO (2005) Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J Bacteriol 187:7753-764 CrossRef
  • 作者单位:Yihan Liu (1)
    Song Lin (1)
    Xiqing Zhang (1)
    Xiaoguang Liu (1)
    Jianling Wang (1)
    Fuping Lu (1) (2)

    1. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
    2. No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, 08 Postbox, Tianjin, 300457, People’s Republic of China
  • ISSN:1476-5535
文摘
The transglutaminase (BTG) from Bacillus subtilis is considered to be a new type of transglutaminase for the food industry. Given that the BTG gene only encodes a mature peptide, the expression of BTG in heterologous microbial hosts could affect their normal growth due to BTG’s typical transglutaminase activity which can catalyze cross-linking of proteins in the cells. Therefore, we developed a novel approach to suppress BTG activity and reduce the toxicity on microbial hosts, thus improving BTG yield. Genes encoding the respective regions of transglutaminase propeptide from seven species of Streptomyces were fused to the N-terminal of the BTG gene to produce fusion proteins. We found that all the fused propeptides could suppress BTG activity. Importantly, BTG activity could be completely restored after the removal of the propeptides by proteolytic cleavage. Of the seven propeptides tested, the propeptide proD from Streptomyces caniferus had the strongest suppressive effect on BTG activity (70?% of the activity suppressed). Moreover, fusion protein proD-BTG (containing proD) also exhibited the highest yield which was more than twofold of the expression level of BTG in an active form in Escherichia coli. Secretion expression of BTG and proD-BTG in Corynebacterium glutamicum further showed that our novel approach was suitable for the efficient BTG expression, thus providing a valuable platform for further optimization of large-scale BTG production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700