Field intensity factors around inclusion corners in 0–3 and 1–3 composites subjected to thermo-mechanical loads
详细信息    查看全文
  • 作者:Xuecheng Ping ; Mengcheng Chen ; Yihua Xiao…
  • 关键词:Composites ; Inclusion ; Thermo ; mechanical load ; Singular stress ; Numerical eigensolution
  • 刊名:International Journal of Mechanics and Materials in Design
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 页码:121-139
  • 全文大小:1,117 KB
  • 参考文献:Barut, A., Guven, I., Madenci, E.: Analysis of singular stress fields at junctions of multiple dissimilar materials under mechanical and thermal loading. Int. J. Solids Struct. 38, 9077–9109 (2001)CrossRef MATH
    Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223 (1965)CrossRef
    Buryachenko, V.A.: Micromechanics of Heterogeneous Materials. Springer, New York (2007)CrossRef MATH
    Buryachenko, V.A., Bechel, V.T.: A series solution of the volume integral equation for multiple inclusion interaction problems. Compos. Sci. Technol. 60, 2465–2469 (2000)CrossRef
    Chen, D.H.: Analysis of singular stress field around the inclusion corner tip. Eng. Fract. Mech. 49, 533–546 (1994)CrossRef
    Chen, D.H., Nisitani, H.: Singular stress fields near the corner of the corner of jointed dissimilar materials. J. Appl. Mech. 60, 607–613 (1993a)CrossRef MATH
    Chen, D.H., Nisitani, H.: Singular stress field in jointed materials due to thermal residual stress. Trans. JSME Ser. A 59, 1937–1941 (1993b)CrossRef
    Chen, M.C., Ping, X.C.: A novel hybrid finite element analysis of inplane singular elastic field around inclusion corner-tips in elastic media. Int. J. Solids Struct. 46, 2527–2538 (2009a)CrossRef MATH
    Chen, M.C., Ping, X.C.: Analysis of the interaction within a rectangular array of rectangular inclusions using a new hybrid finite element method. Eng. Fract. Mech. 76, 580–593 (2009b)CrossRef
    Chen, M.C., Ping, X.C.: Analysis of singular thermal stress fields around corner tips of inclusions. Chin. J. Solids Mech. 32, 314–318 (2011)
    Chen, M.C., Sze, K.Y.: A novel hybrid finite element analysis of bimaterial wedge problems. Eng. Fract. Mech. 68, 1463–1476 (2001)CrossRef
    Dong, C.Y., Cheung, Y.K., Lo, S.H.: A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method. Comput. Methods Appl. Mech. Eng. 191, 3411–3421 (2002)CrossRef MATH
    Dong, C.Y., Lo, S.H., Cheung, Y.K.: Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Methods Appl. Mech. Eng. 192, 683–696 (2003)CrossRef MATH
    Dong, C.Y., Zhang, G.L.: Boundary element analysis of three dimensional nanoscale inhomogeneities. Int. J. Solids Struct. 50, 201–208 (2013)CrossRef
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)CrossRef MathSciNet MATH
    Ghosh, S., Mukhopadhyay, S.N.: A material based finite element analysis of heterogeneous media involving Dirichlet tessellations. Comput. Methods Appl. Mech. Eng. 104, 211–247 (1993)CrossRef MATH
    Gong, S.X., Meguid, S.A.: Interacting circular inhomogeneities in plane elastostatics. Acta Mech. 99, 49–60 (1993a)CrossRef MATH
    Gong, S.X., Meguid, S.A.: On the elastic fields of an elliptical inhomogeneity under plane deformation. Proc. R. Soc. Lond. A 443, 457–471 (1993b)CrossRef MATH
    Hill, J.R.: A self consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)CrossRef
    Kattis, M.A., Meguid, S.A.: On the partly bonded thermoelastic circular inhomogeneity. J. Appl. Mech. 62, 535–537 (1995)CrossRef MathSciNet MATH
    Kröner, E.: Berechnung der elastischen Kongstanten des Vielkristalls aus den Kongstanten des Einkristalls. Z. Phys. 151, 504–518 (1958)CrossRef
    Kushch, V.I., Shmegera, S.V., Buryachenko, V.A.: Interacting elliptic inclusions by the method of complex potentials. Int. J. Solids Struct. 42, 5491–5512 (2005)CrossRef MATH
    Lee, J., Choi, S., Mal, A.: Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique. Int. J. Solids Struct. 38, 2789–2802 (2001)CrossRef MATH
    Luo, J.C., Gao, C.F.: Stress field of a coated arbitrary shape inclusion. Meccanica 46, 1055–1071 (2011)CrossRef MathSciNet MATH
    Madenci, E., Shkarayev, S., Sergeev, B.: Thermo-mechanical stresses for a triple junction of dissimilar materials: global–local finite element analysis. Theor. Appl. Fract. Mech. 30, 103–117 (1998)CrossRef
    Meguid, S.A., Hu, G.D.: A new finite element for treating plane thermomechanical heterogeneous solids. Int. J. Numer. Methods Eng. 44, 567–585 (1999)CrossRef MathSciNet MATH
    Meguid, S.A., Zhu, Z.H.: A new finite element for treating inhomogenous solids. Int. J. Numer. Methods Eng. 38, 1579–1592 (1995a)CrossRef MATH
    Meguid, S.A., Zhu, Z.H.: Stress distribution in dissimilar materials containing inhomogeneities near the interface using a novel finite element. Finite Elem. Anal. Des. 20, 283–298 (1995b)CrossRef MATH
    Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metal. 21, 571–574 (1973)CrossRef
    Munz, D., Yang, Y.Y.: Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loads. J. Appl. Mech. 59, 857–881 (1992)CrossRef
    Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Dordrecht (1987)CrossRef
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff, Groningen (1953)MATH
    Nakamura, T., Suresh, S.: Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metal. Mater. 41, 1665–1681 (1993)CrossRef
    Nakasone, Y., Nishiyama, H., Nojiri, T.: Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Mater. Sci. Eng. A 285, 229–238 (2000)CrossRef
    Nemat-Nasser, S., Muneo, H.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1999)
    Noda, N.A., Hayashida, H., Tomari, K.: Interaction among a row of ellipsoidal inclusions. Int. J. Fract. 102, 371–392 (2000a)CrossRef
    Noda, N.A., Takase, Y.: Intensity of singular stress at the fiber end in a hexagonal array of fibers. Int. J. Solids Struct. 42, 4890–4908 (2005)CrossRef MATH
    Noda, N.A., Takase, Y., Chen, M.C.: Generalized stress intensity factors in the interaction between two fibers in matrix. Int. J. Fract. 103, 19–39 (2000b)CrossRef
    Noda, N.A., Takase, Y., Hamashima, T.: Generalized stress intensity factors in the interaction within a rectangular array of rectangular inclusions. Arch. Appl. Mech. 73, 311–322 (2003)CrossRef MATH
    Noda, N.A., Shirao, R., Li, J., Sugimoto, J.S.: Intensity of singular stress fields causing interfacial debonding at the end of a fiber under pullout force and transverse tension. Int. J. Solids Struct. 44, 4472–4491 (2007)CrossRef MATH
    Singh, I.V., Mishra, B.K., Bhattacharya, S.: XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int. J. Mech. Mater. Des. 7, 199–218 (2011)CrossRef
    Sze, K.Y., Wang, H.T.: A simple finite element formulation for computing stress singularities at bimaterial interfaces. Finite Elem. Anal. Des. 35, 97–118 (2000)CrossRef MATH
    Thomson, R.D., Hancock, J.W.: Local stress and strain fields near a spherical elastic inclusion in a physically deforming matrix. Int. J. Fract. 24, 209–228 (1984)CrossRef
    Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44, 7988–8005 (2007)CrossRef MATH
    Tiwary, A., Hu, C., Ghosh, S.: Numerical conformal mapping method based Voronoi cell finite element model for analyzing microstructures with irregular heterogeneities. Finite Elem. Anal. Des. 43, 504–520 (2007)CrossRef MathSciNet
    Tsukrov, I., Novak, J.: Effective elastic properties of solids with defects of irregular shapes. Int. J. Solids Struct. 391, 1539–1555 (2002)CrossRef
    Williams, M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19, 526–528 (1952)
    Xu, L.M., Fan, H., Sze, K.Y., Li, C.: Elastic property prediction by finite element analysis with random distribution of materials for heterogeneous solids. Int. J. Mech. Mater. Des. 3, 319–327 (2006)CrossRef
    Zou, W.N., He, Q.C., Huang, M.J., Zheng, Q.S.: Eshelby’s problem of non-elliptical inclusions. J. Mech. Phys. Solids 58, 346–372 (2010)CrossRef MathSciNet MATH
  • 作者单位:Xuecheng Ping (1)
    Mengcheng Chen (2)
    Yihua Xiao (1)
    Qing Wang (1)

    1. School of Mechanical and Electronical Engineering, East China Jiaotong University, Nanchang, 330013, Jiangxi, China
    2. School of Civil Engineering, East China Jiaotong University, Nanchang, 330013, Jiangxi, China
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Engineering Design
    Continuum Mechanics and Mechanics of Materials
    Materials Science
  • 出版者:Springer Netherlands
  • ISSN:1573-8841
文摘
A super inclusion corner apex element for polygonal inclusions in 0–3 and 1–3 composites is developed by using numerical stress and displacement field solutions based on an ad hoc finite element eigenanalysis method. Singular stresses near the apex of inclusion corner under thermo-mechanical loads can be obtained by using a super inclusion corner apex element in conjunction with hybrid-stress elements. The validity and the applicability of this technique are established by comparing the present numerical results with the existing solutions and the conventional finite element solutions. As examples of applications, a square array of square inclusions in 0–3 composites and a rectangular array of rectangular inclusions in 1–3 composites are considered. All numerical examples show that the present numerical method yields satisfactory solutions with fewer elements and is applicable to complex problems such as multiple singular points or fields in composite materials. Keywords Composites Inclusion Thermo-mechanical load Singular stress Numerical eigensolution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700