Placental mesenchymal stem cells of fetal and maternal origins demonstrate different therapeutic potentials
详细信息    查看全文
  • 作者:Yongzhao Zhu (1) (2)
    Yinxue Yang (1)
    Yaolin Zhang (1) (4)
    Guiliang Hao (1) (4)
    Ting Liu (1)
    Libin Wang (1) (3)
    Tingting Yang (1)
    Qiong Wang (1)
    Guangyi Zhang (1)
    Jun Wei (1) (3)
    Yukui Li (1) (3)

    1. Institute of Stem Cell Research
    ; General Hospital of Ningxia Medical University ; Yinchuan ; 750004 ; China
    2. Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China
    ; College of Life science ; Ningxia University ; Yinchuan ; 750021 ; China
    4. School of Laboratory Medicine
    ; Ningxia Medical University ; Yinchuan ; 750004 ; China
    3. Key Laboratory of Fertility Preservation and Maintenance
    ; Ministry of Education ; Ningxia Medical University ; Yinchuan ; 750004 ; China
  • 刊名:Stem Cell Research & Therapy
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:5
  • 期:2
  • 全文大小:1,741 KB
  • 参考文献:1. Sekiya, I, Larson, BL, Smith, JR, Pochampally, R, Cui, JG, Prockop, DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20: pp. 530-541 CrossRef
    2. Pittenger, MF, Mackay, AM, Beck, SC, Jaiswal, RK, Douglas, R, Mosca, JD, Moorman, MA, Simonetti, DW, Craig, S, Marshak, DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: pp. 143-147 CrossRef
    3. De Miguel, M, Fuentes-Juli谩n, S, Bl谩zquez-Mart铆nez, A, Pascual, CY, Aller, MA, Arias, J, Arnalich-Montiel, F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12: pp. 574-591 CrossRef
    4. Majumdar, MK, Keane-Moore, M, Buyaner, D, Hardy, WB, Moorman, MA, McIntosh, KR, Mosca, JD (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10: pp. 228-241 CrossRef
    5. Pietil盲, M, Lehtonen, S, Tuovinen, E, L盲hteenm盲ki, K, Laitinen, S, Leskel盲, HV, N盲tynki, A, Pes盲l盲, J, Nordstr枚m, K, Lehenkari, P (2012) CD200 positive human mesenchymal stem cells suppress TNF-alpha secretion from CD200 receptor positive macrophage-like cells. PLoS One 7: pp. e31671 CrossRef
    6. Ben-David, D, Livne, E, Reznick, AZ (2012) The involvement of oxidants and NF-魏B in cytokine-induced MMP-9 synthesis by bone marrow-derived osteoprogenitor cells. Inflamm Res 61: pp. 673-688 CrossRef
    7. Neuss, S, Becher, E, W枚ltje, M, Tietze, L, Jahnen-Dechent, W (2004) Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22: pp. 405-414 CrossRef
    8. Standal, T, Abildgaard, N, Fagerli, UM, Stordal, B, Hjertner, O, Borset, M, Sundan, A (2007) HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 109: pp. 3024-3030
    9. Xu, S, Menu, E, De Becker, A, Van Camp, B, Vanderkerken, K, Van Riet, I (2012) Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 30: pp. 266-279 CrossRef
    10. Li, X, Ling, W, Pennisi, A, Wang, Y, Khan, S, Heidaran, M, Pal, A, Zhang, X, He, S, Zeitlin, A, Abbot, S, Faleck, H, Hariri, R, Shaughnessy, JD, van Rhee, F, Nair, B, Barlogie, B, Epstein, J, Yaccoby, S (2011) Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells 29: pp. 263-273 CrossRef
    11. Klopp, A, Gupta, A, Spaeth, E, Andreeff, M, Marini, F (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth?. Stem Cells 29: pp. 11-19 CrossRef
    12. Parolini, O, Alviano, F, Bergwerf, I, Boraschi, D, De Bari, C, De Waele, P, Dominici, M, Evangelista, M, Falk, W, Hennerbichler, S, Hess, DC, Lanzoni, G, Liu, B, Marongiu, F, McGuckin, C, Mohr, S, Nolli, ML, Ofir, R, Ponsaerts, P, Romagnoli, L, Solomon, A, Soncini, M, Strom, S, Surbek, D, Venkatachalam, S, Wolbank, S, Zeisberger, S, Zeitlin, A, Zisch, A, Borlongan, CV (2010) Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev 19: pp. 143-154 CrossRef
    13. Raynaud, CM, Maleki, M, Lis, R, Ahmed, B, Al-Azwani, I, Malek, J, Safadi, FF, Rafii, A (2012) Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem Cells Int 2012: pp. 658356 CrossRef
    14. Lee, JM, Jung, J, Lee, HJ, Jeong, SJ, Cho, KJ, Hwang, SG, Kim, GJ (2012) Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol 13: pp. 219-224 CrossRef
    15. Abumaree, MH, Al Jumah, MA, Kalionis, B, Jawdat, D, Al Khaldi, A, Al Talabani, AA, Knawy, BA (2013) Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev 9: pp. 16-31 CrossRef
    16. Barlow, S, Brooke, G, Chatterjee, K, Price, G, Pelekanos, R, Rossetti, T, Doody, M, Venter, D, Pain, S, Gilshenan, K, Atkinson, K (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cell Dev 17: pp. 1095-1107 CrossRef
    17. Jaramillo-Ferrada, PA, Wolvetang, EJ, Cooper-White, JJ (2012) Differential mesengenic potential and expression of stem cell-fate modulators in mesenchymal stromal cells from human-term placenta and bone marrow. J Cell Physiol 227: pp. 3234-3242 CrossRef
    18. Wang, L, Yang, Y, Zhu, Y, Ma, X, Liu, T, Zhang, G, Fan, H, Ma, L, Jin, Y, Yan, X, Wei, J, Li, Y (2012) Characterization of placenta-derived mesenchymal stem cells cultured in autologous human cord blood serum. Mol Med Rep 6: pp. 760-766
    19. In鈥榯 Anker, PS, Scherjon, SA, Kleijburg-van der Keur, C, de Groot-Swings, GM, Claas, FH, Fibbe, WE, Kanhai, HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22: pp. 1338-1345 CrossRef
    20. Roelen, DL, van der Mast, BJ, In't Anker, PS, Kleijburg, C, Eikmans, M, van Beelen, E, de Groot-Swings, GM, Fibbe, WE, Kanhai, HH, Scherjon, SA, Claas, FH (2009) Differential immunomodulatory effects of fetal versus maternal multipotent stromal cells. Hum Immunol 70: pp. 16-23 CrossRef
    21. Gorczynski, R, Chen, Z, Kai, Y, Lee, L, Wong, S, Marsden, PA (2004) CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J Immunol 172: pp. 7744-7749 CrossRef
    22. Hoek, RM, Ruuls, SR, Murphy, CA, Wright, GJ, Goddard, R, Zurawski, SM, Blom, B, Homola, ME, Streit, WJ, Brown, MH, Barclay, AN, Sedgwick, JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290: pp. 1768-1771 CrossRef
    23. Matsumoto, K, Nakamura, T (1997) Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun 239: pp. 639-644 CrossRef
    24. Benkhoucha, M, Santiago-Raber, ML, Schneiter, G, Chofflon, M, Funakoshi, H, Nakamura, T, Lalive, PH (2010) Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25鈥?鈥塅oxp3+ regulatory T cells. Proc Natl Acad Sci U S A 107: pp. 6424-6429 CrossRef
    25. Chen, D, Ma, F, Xu, S, Chen, F, Rong, L, Chi, Y, Zhao, Q, Lu, S, Han, Z, Pang, A, Han, Z (2013) Expression and role of Toll-like receptors on human umbilical cord mesenchymal stromal cells. Cytotherapy 15: pp. 423-433 CrossRef
    26. Hass, R, Otte, A (2012) Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal 10: pp. 26 CrossRef
    27. Wolbank, S, van Griensven, M, Grillari-Voglauer, R, Peterbauer-Scherb, A (2010) Alternative sources of adult stem cells: human amniotic membrane. Adv Biochem Eng Biotechnol 123: pp. 1-27
    28. Soncini, M, Vertua, E, Gibelli, L, Zorzi, F, Denegri, M, Albertini, A, Wengler, GS, Parolini, O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1: pp. 296-305 CrossRef
    29. Brooke, G, Tong, H, Levesque, JP, Atkinso, K (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17: pp. 929-940 CrossRef
    30. Wang, HS, Hung, SC, Peng, ST, Huang, CC, Wei, HM, Guo, YJ, Fu, YS, Lai, MC, Chen, CC (2004) Mesenchymal stem cells in the Wharton鈥檚 jelly of the human umbilical cord. Stem Cells 22: pp. 1330-1337 CrossRef
    31. Majore, I, Moretti, P, Stahl, F, Hass, R, Kasper, C (2011) Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev 7: pp. 17-31 CrossRef
    32. Kern, S, Eichler, H, Stoeve, J, Kl眉ter, H, Bieback, K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24: pp. 1294-1301 CrossRef
    33. Hwang, JH, Shim, SS, Seok, OS, Lee, HY, Woo, SK, Kim, BH, Song, HR, Lee, JK, Park, YK (2009) Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. J Korean Med Sci 24: pp. 547-554 CrossRef
    34. Gaebel, R, Furlani, D, Sorg, H, Polchow, B, Frank, J, Bieback, K, Wang, W, Klopsch, C, Ong, LL, Li, W, Ma, N, Steinhoff, G (2011) Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One 6: pp. e15652 CrossRef
    35. Gorczynski, RM, Chen, Z, Khatri, I, Yu, K (2011) Graft-infiltrating cells expressing a CD200 transgene prolong allogeneic skingraft survival in association with local increases in Foxp3 (+) Treg and mast cells. Transpl Immunol 25: pp. 187-193 CrossRef
    36. Rygiel, TP, Luijk, B, Meyaard, L (2013) Use of an anti-CD200 antibody for prolonging the survival of allografts: a patent evaluation of WO2012106634A1. Expert Opin Ther Pat 23: pp. 389-392 CrossRef
    37. Sasaki, M, Abe, R, Fujita, Y, Ando, S, Inokuma, D, Shimizu, H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180: pp. 2581-2587 CrossRef
    38. Wu, Y, Chen, L, Scott, PG, Tredget, EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25: pp. 2648-2659 CrossRef
  • 刊物主题:Stem Cells; Cell Biology;
  • 出版者:BioMed Central
  • ISSN:1757-6512
文摘
Introduction Therapeutic potentials of mesenchymal stem cells (MSCs) from different sources have been evaluated in pre-clinical and clinical settings. Although MSCs from different sources share MSC-specific characteristics and functions, inconsistent or controversial results of pre-clinical and clinical applications of such cells are frequently reported. This may be partially due to the fact that MSCs isolated from different origins may differentially express some functions not typical for MSCs, and hence have different therapeutic potentials. The aim of this study is to investigate the differences in human placental MSCs (P-MSCs) of fetal and maternal origins in the aspects of clinical importance. Methods P-MSCs of fetal and maternal origins isolated from normal term placentas were characterized for their typical phenotype as well as their expression of receptors and growth factors of clinic interests. P-MSCs that preferentially express hepatocyte growth factor (HGF) and CD200 were evaluated for their therapeutic potentials in models of angiogenesis and allogeneic skin transplantation, in comparison with their HGF and CD200 negative partners. Results Although all P-MSCs express typical MSC phenotype, fetal but not maternal P-MSCs express high levels of CD200 and HGF. Compared with HGF and CD200 negative P-MSCs, HGF and CD200 positive cells demonstrated significantly high potentials in promoting angiogenesis in vitro and increasing immunosuppressive function in vivo. These therapeutic potentials were at least in part due to their differences in HGF and CD200 expression, respectively. Conclusions We conclude that MSC origins may have significant impact on the therapeutic potentials of such cells, and should be taken into consideration in clinical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700