Fabrication and Characterization of Li2TiO3–Li4SiO4 Pebbles for Tritium Breeder
详细信息    查看全文
  • 作者:Maoqiao Xiang ; Yingchun Zhang ; Yun Zhang ; Shuya Liu ; Hui Liu…
  • 关键词:Tritium breeder ; Li+ transferring process ; Li2TiO3–Li4SiO4
  • 刊名:Journal of Fusion Energy
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:34
  • 期:6
  • 页码:1341-1347
  • 全文大小:1,971 KB
  • 参考文献:1.D.L. Jassby, J. File, P.C. Bertone et al., The TFTR lithium blanket module program. J. Fusion Energ. 4(1), 57-7 (1985)CrossRef ADS
    2.M. übeyli, Effect of lithium enrichment on the tritium breeding characteristics of various breeders in a fusion driven hybrid reactor. J. Fusion Energ. 28(3), 300-03 (2009)CrossRef ADS
    3.K. Jiang, J. Li, X. Zhang, S. Liu, The development and application of one thermal–hydraulic program based on ANSYS for design of ceramic breeder blanket of CFETR. J. Fusion Energ. (2015). doi:10.-007/?s10894-015-9923-6
    4.G. Zhou, M. Li, Q. Liu et al., Thermal analysis of breeder unit for helium cooled solid breeder blanket of Chinese fusion engineering test reactor. J. Fusion Energ. 34(2), 339-45 (2015)MathSciNet CrossRef
    5.N. Roux, S. Tanaka, C. Johnson, et al., Ceramic breeder material development. Fusion Eng. Des. 41, 31-8 (1998)CrossRef
    6.G. Schumacher, Improvement of the mechanical stability of lithium-orthosilicate pebbles. Fusion Eng. Des. 17, 31-6 (1991)CrossRef
    7.T. Hoshino, K. Kato, Development of advanced tritium breeding material with added lithium for ITER-TBM. J. Nucl. Mater. 417, 684-87 (2011)CrossRef ADS
    8.C.L. Liu, J. Zhang, H. Yang et al., The temperature control mechanism of a breeding blanket module for fusion reactor. J. Fusion Energ. 33(4), 422-27 (2014)MathSciNet CrossRef
    9.J.G. Van der Laan, H. Kawamura et al., Ceramic breeder research and development: progress and focus. J. Nucl. Mater. 283, 99-00 (2000)CrossRef ADS
    10.M.C. Billone, W. Dienst, et al., ITER Solid Breeder Blanket Materials Database (Argonne National Lab., IL. Funding organisation: USDOE, Washington, DC, 1993)
    11.R. Knitter, M.H.H. Kolb et al., Fabrication of modified lithium orthosilicate pebbles by addition of titania. J. Nucl. Mater. 442, S433–S436 (2013)CrossRef ADS
    12.C. Alvani, S. Casadio, V. Contini et al., Li2TiO3 pebbles reprocessing, recovery of 6Li as Li2CO3. J. Nucl. Mater. 307-11, 837-41 (2002)CrossRef
    13.O. Leys, C. Odemer et al., Microstructure analysis of melt-based lithium orthosilicate/metatitanate pebbles. Pract Metallogr 50, 196-04 (2013)CrossRef
    14.D.A.H. Hanaor, M.H.H. Kolb et al., Solution based synthesis of mixed-phase materials in the Li2TiO3–Li4SiO4 system. J. Nucl. Mater. 456, 151-61 (2015)CrossRef ADS
    15.Y.J. Feng, K.M. Feng, Q.X. Cao, Fabrication and characterization of Li4SiO4 pebbles by melt spraying method. Fusion Eng. Des. 87, 753-56 (2012)CrossRef
    16.M. Hong, Y. Zhang, Characterization of Li2TiO3 pebbles by graphite bed process. J. Nucl. Mater. 441, 390-94 (2013)CrossRef ADS
    17.W. Manheimer, Fusion breeding for mid-century sustainable power. J. Fusion Energ. 33(3), 199-34 (2014)CrossRef
    18.S.L. Chou, J.Z. Wang, Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J. Phys. Chem. C 115, 16220-6227 (2011)CrossRef
    19.A.R. West, Ionic conductivity of oxides based on Li4SiO4. J. Appl. Electrochem. 3(4), 327-35 (1973)CrossRef
    20.D. Tranqui, R.D. Shannon, H.Y. Chen, Crystal structure of ordered Li4SiO4. Acta Crystallogr. B 35, 2479 (1979)CrossRef
    21.T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li [Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995)CrossRef
    22.T. Tang, D.L. Luo, Density functional theory study of electronic structures in lithium silicates: Li2SiO3 and Li4SiO4. J. At. Mol. Sci. 1, 185 (2010)
    23.K. Omoto, T. Hashimoto, K. Sasaki et al., Structural analysis of Li2TiO3 by synchrotron X-ray diffraction at high temperature. J. Nucl. Mater. 417(1), 692-95 (2011)CrossRef ADS
    24.J.L. Anderson, Tritium systems: issues and answers. J. Fusion Energ. 4(2), 155-60 (1985)CrossRef ADS
  • 作者单位:Maoqiao Xiang (1)
    Yingchun Zhang (1)
    Yun Zhang (1)
    Shuya Liu (1)
    Hui Liu (1)
    Chaofu Wang (1)

    1. School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People’s Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Nuclear Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-9591
文摘
Lithium based ceramics have been regarded as the promising ceramic breeders of the test blanket modules. As lithium burn-up of ceramic pebbles in the fusion reactor will be limited to about 15 % due to Li transmutation. The phase and composition (Li+ transferring process) of Li2TiO3–Li4SiO4 ceramic pebbles with a certain amount of Li loss (?em class="EmphasisTypeItalic ">xLi2TiO3 and ?em class="EmphasisTypeItalic ">xLi4SiO4, x = 0, 5, 10, 20 %, molar ratio) were simulated by thermogravimetry and differential scanning calorimetry and X-ray diffractometer for the first time. The results showed that the Li+ of Li4SiO4 could move to Li4Ti5O12 to form Li2SiO3 and Li2TiO3 as the octahedral (16c) sites of Li4Ti5O12 are empty. In order to tailor the properties for optimization, 20 % Li2TiO3-0 % Li4SiO4 pebbles were fabricated by a graphite bed process. In combining these materials, the pebbles obtained reasonable pores, small grains, and relative high crush load. Keywords Tritium breeder Li+ transferring process Li2TiO3–Li4SiO4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700