A two-layer ONIOM study of thiophene cracking catalyzed by proton- and cation-exchanged FAU zeolite
详细信息    查看全文
  • 作者:Yingxin Sun ; Xinfeng Mao ; Supeng Pei
  • 关键词:Thiophene ; Hydrodesulfurization mechanism ; Cation ; exchanged FAU zeolite ; C ; S bond cracking ; Bimolecular desulfurization step
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 全文大小:1,842 KB
  • 参考文献:1.Shan JH, Chen L, Sun LB, Liu XQ (2011) Energ Fuel 25:3093–3099CrossRef
    2.Duan LH, Gao XH, Meng XH, Zhang HT, Wang Q, Qin YC, Zhang XT, Song LJ (2012) J Phys Chem C 116:25748–25756CrossRef
    3.Welters WJJ, Vorbeck G, Zandbergen HW, de Haan JW, de Beer VHJ, van Santen RA (1994) J Catal 150:155–169CrossRef
    4.Hernández-Maldonado AJ, Yang RT (2003) Ind Eng Chem Res 42:123–129CrossRef
    5.Yang RT, Takahashi A, Yang FH (2001) Ind Eng Chem Res 40:6236–6239CrossRef
    6.Chica A, Strohmaier K, Iglesia E (2004) Langmuir 20:10982–10991CrossRef
    7.Richardeau D, Joly G, Canaff C, Magnoux P, Guisnet M, Thomas M, Nicolaos A (2004) Appl Catal A Gen 263:49–61CrossRef
    8.Shan HH, Li CY, Yang CH, Zhao H, Zhao BY, Zhang JF (2002) Catal Today 77:117–126CrossRef
    9.Valla JA, Mouriki E, Lappas AA, Vasalos IA (2007) Catal Today 127:92–98CrossRef
    10.Angelis BA, Appierto G (1975) J Colloid Interface Sci 53:14–19CrossRef
    11.Welters WJJ, de Beer VHJ, van Santen RA (1994) Appl Catal A Gen 119:253–269CrossRef
    12.Yu SY, Li W, Iglesia E (1999) J Catal 187:257–261CrossRef
    13.García CL, Lercher JA (1992) J Phys Chem 96:2669–2675CrossRef
    14.Simon LJ, Rep M, van Ommen JG, Lercher JA (2001) Appl Catal A Gen 218:161–170CrossRef
    15.Hernández-Maldonado AJ, Yang RT (2004) J Am Chem Soc 126:992–993CrossRef
    16.Saintigny X, van Santen RA, Clemendot S, Hutschka F (1999) J Catal 183:107–118CrossRef
    17.Rozanska X, van Santen RA, Hutschka F (2001) J Catal 200:79–90CrossRef
    18.Rozanska X, van Santen RA, Hutschka F, Hafner J (2003) J Catal 215:20–29CrossRef
    19.Li BR, Guo WP, Yuan SP, Hu J, Wang JG, Jiao HJ (2008) J Catal 253:212–220CrossRef
    20.Nieminen V, Sierka M, Yu Murzin D, Sauer J (2005) J Catal 231:393–404CrossRef
    21.Namuangruk S, Tantanak D, Limtrakul J (2006) J Mol Catal A Chem 256:113–121CrossRef
    22.Boronat M, Viruela PM, Corma A (2004) J Am Chem Soc 126:3300–3309CrossRef
    23.Hriljac JA, Eddy MM, Cheetham AK, Donohue JA, Ray GJ (1993) J Solid State Chem 106:66–72CrossRef
    24.Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003) J Comput Chem 24:760–769CrossRef
    25.Vreven TK, Byun S, Komáromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815–826CrossRef
    26.Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRef
    27.Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035CrossRef
    28.Becke AD (1993) J Chem Phys 98:5648–5652CrossRef
    29.Namuangruk S, Pantu P, Limtrakul J (2004) J Catal 225:523–530CrossRef
    30.Limtrakul J, Jungsuttiwong S, Khongpracha P (2000) J Mol Struct 525:153–162CrossRef
    31.Heinz H, Suter UW (2004) J Phys Chem B 108:18341–18352CrossRef
    32.Asada N, Fedorov DG, Kitaura K, Nakanishi I, Merz KM Jr (2012) J Phys Chem Lett 3:2604–2610CrossRef
    33.Otsuka M, Tsuchida N, Ikeda Y, Kimura Y, Mutoh Y, Ishii Y, Takano K (2012) J Am Chem Soc 134:17746–17756CrossRef
    34.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian, Inc, Wallingford
    35.Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRef
    36.Garcia CL, Lercher JA (1993) J Mol Struct 293:235–238CrossRef
    37.Murdoch JR (1981) J Chem Educ 58:32–36CrossRef
    38.Sun YX, Yang J, Zhao LF, Dai JX, Sun H (2010) J Phys Chem C 114:5975–5984CrossRef
    39.Bhan A, Joshi YV, Delgass WN, Thomson KT (2003) J Phys Chem B 107:10476–10487CrossRef
    40.Svelle S, Kolboe S, Swang O (2004) J Phys Chem B 108:2953–2962CrossRef
    41.Correa BJ, Mota CJA (2002) Phys Chem Chem Phys 4:375–380CrossRef
    42.Aksenov DG, Klimov OV, Echevskii GV, Paukshtis EA, Budneva AA (2004) React Kinet Catal Lett 83:187–194CrossRef
    43.Chica A, Strohmaier KG, Iglesia E (2005) Appl Catal B Environ 60:223–232CrossRef
    44.Li Y, Guo WP, Fan WB, Qin ZF, Wang JG (2010) Chin J Catal 31:1419–1426CrossRef
    45.Geobaldo F, Palomino GT, Bordiga S, Zecchina A, Areán CO (1999) Phys Chem Chem Phys 1:561–569CrossRef
    46.Jaimes L, Tonetto GM, Ferreira ML, Lasa H (2008) Int J Chem React Eng 6:1–65
    47.Jaimes L, Ferreira ML, Lasa H (2009) Chem Eng Sci 64:2539–2561CrossRef
    48.Hosono H, Kawazoe H, Nishii J, Kanazawa T (1982) J Non-Cryst Solids 51:217–240CrossRef
    49.Takahashi A, Yang FH, Yang RT (2002) Ind Eng Chem Res 41:2487–2496CrossRef
  • 作者单位:Yingxin Sun (1)
    Xinfeng Mao (1)
    Supeng Pei (1)

    1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
A two-layer ONIOM study on the hydrodesulfurization mechanism of thiophene in H-FAU and M-FAU (M = Li+, Na+, and K+) has been carried out. The calculated results reveal that in H-FAU, for a unimolecular mechanism, the rate-determining step is hydrogenation of alkoxide intermediate. The assistance of H2O and H2S molecules does not reduce the difficulty of the C-S bond cracking step more effectively. A bimolecular hydrodesulfurization mechanism is more favorable due to the lower activation barriers. The rate-determining step is the formation of 2-methylthiophene, not the C-S bond cracking of thiophene. Moreover, the ring opening of thiophene is much easier to occur than the desulfurization step. A careful analysis of energetics indicates that H2S, propene, and methyl thiophene are the major products for the hydrodesulfurization process of thiophene over H-FAU zeolite, in good agreement with experimental findings. In M-FAU zeolites, both unimolecular and bimolecular cracking processes are difficult to occur because of the high energy barriers. Compared to the case on H-FAU, the metal cations on M-FAU increase the difficulty of occurrence of bimolecular polymerization and subsequent C-S bond cracking steps.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700