Preparation of homogeneously dispersed and highly concentrated double-walled carbon nanotubes as catalyst support
详细信息    查看全文
  • 作者:Ming-Mao Li ; Zi-Ping Wu ; Man Zhao ; Wei-Bo Zhang ; Ying-Yan Hu ; Yan-Hong Yin
  • 关键词:Double ; walled carbon nanotubes ; Catalyst support ; Pt/DWCNT catalysts ; Ultrasonication
  • 刊名:Rare Metals
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:35
  • 期:4
  • 页码:337-343
  • 全文大小:1,420 KB
  • 参考文献:[1]Swrvice RF. Shrinking fuel cells promise power in your pocket. Science. 2002;296(5571):1222.CrossRef
    [2]Jin H, Zhang HM, Zhong HX, Zhang JL. Nitrogen-doped carbon xerogel: a novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells. Energy Environ Sci. 2011;4(9):3389.CrossRef
    [3]Zhao ZZ, Fang X, Li YL, Wang Y, Shen PK, Xie FY, Zhang X. The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation. Electrochem Commun. 2009;11(2):290.CrossRef
    [4]Umeda M, Kokubo M, Mohamdei M, Uchida I. Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation. Electrochim Acta. 2003;48(10):1367.CrossRef
    [5]Niu JJ, Wang JN. Gas flow dependence on hollow carbon nano-cages as catalyst support in fuel cells. J Mater Chem. 2008;18(48):5921.CrossRef
    [6]Yin SB, Cai M, Wang CX, Shen PK. Tungsten carbide promoted Pd–Fe as alcohol-tolerant electrocatalysts for oxygen reduction reactions. Energy Environ Sci. 2011;4(2):558.CrossRef
    [7]Li RQ, Wang W, Wu YF, Zhang QJ. Photochemical synthesis and characterization of Au Core@Pt shell nanoparticles. Rare Met. 2014;38(3):516.
    [8]Sheng ZM, Wang JN. Thin-walled carbon nanocages: direct growth, characterization, and applications. Adv Mater. 2008;20(5):1071.CrossRef
    [9]Chen WF, Huang HY, Lien CH, Kuo PL. Enhanced stabilization and deposition of Pt nanocrystals on carbon by dumbbell-like polyethyleniminated poly(oxypropylene)diamine. J Phys Chem B. 2006;110(20):9822.CrossRef
    [10]Natarajan SK, Hamelin J. Homogeneous platinum deposition on chemically modified carbon nanostructures as catalysts for PEMFCs. Electrochim Acta. 2007;52(11):3751.CrossRef
    [11]Wu ZP, Xia BY, Wang XX, Wang JN. Preparation of dispersible double-walled carbon nanotubes and application as catalyst support in fuel cells. J Power Sources. 2010;195(8):2143.CrossRef
    [12]Zhang DS, Zhang L, Shi LY, Fang C, Li HR, Gao RH, Huang L, Zhang JP. In situ supported MnO x –CeO x on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale. 2013;5(3):1127.CrossRef
    [13]Zhang DS, Zhang L, Fang C, Gao RH, Qian YL, Shi LY, Zhang JP. MnO x –CeO x /CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3. RSC Adv. 2013;3(23):8811.CrossRef
    [14]Fang C, Zhang DS, Shi LY, Gao RH, Li HR, Ye LP, Zhang JP. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal Sci Technol. 2013;3(3):803.CrossRef
    [15]Zhang L, Zhang DS, Zhang JP, Cai SX, Fang C, Huang L, Li HR, Gao RH, Shi LY. Design of meso-TiO2@MnO(x)–CeO(x)/CNTs with a core-shell structure as DeNO(x) catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale. 2013;5(20):9821.CrossRef
    [16]Fang C, Zhang DS, Cai SX, Zhang L, Huang L, Li HR, Maitarad P, Shi LY, Gao RH, Zhang JP. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnO x on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale. 2013;5(19):9199.CrossRef
    [17]Du CY, Zhao TS, Liang ZX. Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. J Power Sources. 2008;176(1):9.CrossRef
    [18]Hsieh CT, Lin JY, Yang SY. Carbon nanotubes embedded with PtRu nanoparticles as methanol fuel cell electrocatalysts. Phys E. 2009;41(3):373.CrossRef
    [19]Guo DJ, Li HL. High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. J Electroanal Chem. 2004;573(1):197.
    [20]Morrow BH, Striolo A. Morphology and diffusion mechanism of platinum nanoparticles on carbon nanotube bundles. J Phys Chem C. 2007;111(48):17905.CrossRef
    [21]Zhu W, Zheng JP, Liang R, Wang B, Zhang GA, Plichtae EJ. Durability study on sWNT/nanofiber buckypaper catalyst support for PEMFCs. J Electrochem Soc. 2009;156(9):1099.CrossRef
    [22]Amiran J, Nicolosi V, Bergin SD, Khan U, Loyons PE, Coleman JN. High quality dispersions of functionalized single walled nanotubes at high concentration. J Phys Chem C. 2008;112(10):3519.CrossRef
    [23]Li YM, Recio LF, Gerstel P, Srot V, Aken PAV, Kaiser G, Burghard M, Bill J. Chemical modification of single-walled carbon nanotubes for the reinforcement of precursor-derived ceramics. Chem Mater. 2008;20(17):5593.CrossRef
    [24]Sun J, Wang Y, Gao L, Liu YQ, Kajiura H, Li YM, Noda K. Debundling of single-walled carbon nanotubes by nanoball-penetrating method. J Phys Chem C. 2008;112(6):1789.CrossRef
    [25]Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed. 2001;40(9):1721.CrossRef
    [26]Li B, Shi ZJ, Lian YF, Gu ZN. Aqueous soluble single-wall carbon nanotube. Chem Lett. 2001;7:598.CrossRef
    [27]Riggs JE, Guo ZX, Carroll DL, Sun YP. Strong luminescence of solubilised carbon nanotube. J Am Chem Soc. 2000;122(24):5879.CrossRef
    [28]Lee JH, Paik U, Choi JY, Kim KK, Yoon SM, Lee J, Kim BK, Kim JM, Park MH, Yang CW, An KH, Lee YH. Dispersion stability of single-walled carbon nanotubes using nafion in bisolvent. J Phys Chem C. 2007;111(6):2477.CrossRef
    [29]Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J, Smalley RE, Hauge RH, Margrave JL. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B. 1999;103(21):4318.CrossRef
    [30]Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc. 2005;127(10):3463.CrossRef
    [31]Backes C, Schmidt CD, Hauke F, Bottcher C, Hirsch A. High population of individualized sWCNTs through the adsorption of water-soluble perylenes. J Am Chem Soc. 2009;131(6):2172.CrossRef
    [32]Ganter MJ, Landi BJ, Worman JJ, Schauerman CM, Cress CD, Raffaelle RP. Variation of single wall carbon nanotube dispersion properties with alkyl amide and halogenated aromatic solvents. Mater Chem Phys. 2009;116(1):235.CrossRef
    [33]Zhang DS, Yan TT, Shi LY, Pan CS, Zhang JP. Ethylene glycol reflux synthesis of carbon nanotube/ceria core–shell nanowires. Appl Surf Sci. 2009;255(11):5789.CrossRef
    [34]Wu ZP, Wang JN, Ma J. Methanol-mediated growth of carbon nanotubes. Carbon. 2009;47(1):324.CrossRef
    [35]Wu ZP, Wang JN. Preparation of large-area double-walled carbon nanotube films and application as film heater. Phys E. 2009;42(1):77.CrossRef
    [36]Wu ZP, Li MM, Yin YH, Li YS, Wang ZX, Yin YH, Chen YS, Zhou X. Electromagnetic interference shielding of carbon nanotube macrofilms. Scripta Mater. 2011;64(9):809.CrossRef
    [37]Wu ZP, Xu QF, Wang JN. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. J Mater Sci Technol. 2010;26(1):20.CrossRef
    [38]Jenkins R, Snyder RL. Introduction to X-ray Powder Diffractometry. New York: John Wiley & Sons Inc. 1996. 89.
    [39]Niu JJ, Wang JN, Zhang L, Shi YQ. Electrocatalytical activity on oxidizing hydrogen and methanol of novel carbon nanocages of different pore structures with various platinum loadings. J Phys Chem C. 2007;111(34):10329.CrossRef
    [40]Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH. Mechanism of the oscillatory reduction of peroxodisulfate on gold (110) at electrode potentials positive to the point of zero charge. Electrochim Acta. 1998;43(23):3693.CrossRef
    [41]Ci LJ, Manikoth SM, Li XS, Vajtai R, Ajayan PM. Ultrathick freestanding aligned carbon nanotube films. Adv Mater. 2007;19(20):3300.CrossRef
    [42]Li SH, Li HJ, Wang XB, Song YL, Liu YQ, Jiang L, Zhu DB. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes. J Phys Chem B. 2002;106(36):9274.CrossRef
  • 作者单位:Ming-Mao Li (1)
    Zi-Ping Wu (1)
    Man Zhao (1)
    Wei-Bo Zhang (1)
    Ying-Yan Hu (1)
    Yan-Hong Yin (1)

    1. Engineering Research Institute, Jiangxi University of Science and Technology, Ganzhou, 341000, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
In this study, double-walled carbon nanotubes (DWCNTs) in ethylene glycol (EG) and N,N-dimethylformamide (DMF) media were investigated by a simple ultrasonication method. Homogeneously dispersed and highly concentrated DWCNTs are in EG (95 vol%) and DMF (5 vol%) media without the addition of surfactant. Surface structure and crystallinity of DWCNTs undergo minimal change. The highly concentrated dispersion state of DWCNTs helps in Pt loading. Pt particles prepared in the homogenous dispersion system have small sizes and are uniformly distributed. The prepared Pt catalysts display a similar electrochemical activity to catalysts prepared in EG system with low concentration. The results demonstrate that homogenously dispersed and highly concentrated DWCNTs can realize mass production of Pt/DWCNT catalysts with high electrochemical activity and low cost.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700