Evolving-Pattern Analysis of Transient and Long-Term Biomarkers for Cancers: Hepatocellular Carcinoma as a Case
详细信息    查看全文
  • 作者:Yingying Wang ; Yunpeng Cai ; Yingbo Miao
  • 关键词:Transient biomarker ; Long ; term biomarker ; Functional term ; HCC ; Cirrhosis ; microRNA
  • 刊名:Interdisciplinary Sciences: Computational Life Sciences
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:7
  • 期:4
  • 页码:414-422
  • 全文大小:2,531 KB
  • 参考文献:1.Cui X, Hwang JT et al (2005) Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6(1):59鈥?5CrossRef PubMed
    2.Welsh JB, Sapinoso LM et al (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61(16):5974鈥?978PubMed
    3.Shipp MA, Ross KN et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8(1):68鈥?4CrossRef PubMed
    4.Yunpeng C, YS, Yubo C, Jian L, Steve G (2010) Fast implementation of l1 regularized learning algorithms using gradient descent methods. In: The proceedings of the 10th SIAM international conference on data mining (SDM10), Columbus, Ohio, USA
    5.Franchis R, Meucci G et al (1993) The natural history of asymptomatic hepatitis B surface antigen carriers. Ann Intern Med 118(3):191鈥?94CrossRef PubMed
    6.Fattovich Brollo GL et al (1991) Natural history and prognostic factors for chronic hepatitis type B. Gut 32(3):294鈥?98CrossRef PubMed
    7.Sanchez-Tapias JM, Costa J et al (2002) Influence of hepatitis B virus genotype on the long-term outcome of chronic hepatitis B in western patients. Gastroenterology 123(6):1848鈥?856CrossRef PubMed
    8.Sherman M (2005) Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis 25(2):143鈥?54CrossRef PubMed
    9.Velazquez RF, Rodriguez M et al (2003) Prospective analysis of risk factors for hepatocellular carcinoma in patients with liver cirrhosis. Hepatology 37(3):520鈥?27CrossRef PubMed
    10.Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4):1312鈥?327PubMed Central CrossRef PubMed
    11.Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(4):339鈥?46CrossRef PubMed
    12.Lamb JR, Zhang C et al (2011) Predictive genes in adjacent normal tissue are preferentially altered by sCNV during tumorigenesis in liver cancer and may rate limiting. PLoS One 6(7):e20090PubMed Central CrossRef PubMed
    13.Sung WK, Zheng H et al (2012) Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44(7):765鈥?69CrossRef PubMed
    14.Tung EK, Mak CK et al (2011) Clinicopathological and prognostic significance of serum and tissue Dickkopf-1 levels in human hepatocellular carcinoma. Liver Int 31(10):1494鈥?504CrossRef PubMed
    15.Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25鈥?9PubMed Central CrossRef PubMed
    16.Subramanian A, Tamayo P et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545鈥?5550PubMed Central CrossRef PubMed
    17.Becker KG, Barnes KC et al (2004) The genetic association database. Nat Genet 36(5):431鈥?32CrossRef PubMed
    18.Matys V, Fricke E et al (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374鈥?78PubMed Central CrossRef PubMed
    19.Maragkakis M, Alexiou P et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinf 10:295CrossRef
    20.Maragkakis M, Reczko M et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273鈥?76PubMed Central CrossRef PubMed
    21.Betel D, Koppal A et al (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90PubMed Central CrossRef PubMed
    22.Krek A, Grun D et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495鈥?00CrossRef PubMed
    23.Miranda KC, Huynh T et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203鈥?217CrossRef PubMed
    24.Rehmsmeier M, Steffen P et al (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507鈥?517PubMed Central CrossRef PubMed
    25.Lewis BP, Burge CB et al (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15鈥?0CrossRef PubMed
    26.Lewis BP, Shih IH et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787鈥?98CrossRef PubMed
    27.Kertesz M, Iovino N et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278鈥?284CrossRef PubMed
    28.Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14(6):1012鈥?017PubMed Central CrossRef PubMed
    29.Wang X, Naqa IME (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3):325鈥?32CrossRef PubMed
    30.Bandyopadhyay S, Mitra R (2009) TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25(20):2625鈥?631CrossRef PubMed
    31.John B, Enright AJ et al (2004) Human MicroRNA targets. PLoS Biol 2(11):e363PubMed Central CrossRef PubMed
    32.Trevisani F, Cantarini MC et al (2008) Recent advances in the natural history of hepatocellular carcinoma. Carcinogenesis 29(7):1299鈥?305CrossRef PubMed
    33.Liu AM, Yao TJ et al (2012) Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open 2(2):e000825PubMed Central CrossRef PubMed
    34.Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877鈥?90PubMed Central CrossRef PubMed
    35.Connolly E, Melegari M et al (2008) Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 173(3):856鈥?64PubMed Central CrossRef PubMed
    36.Kutay H, Bai S et al (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99(3):671鈥?78PubMed Central CrossRef PubMed
    37.Murakami Y, Yasuda T et al (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537鈥?545CrossRef PubMed
    38.Wang Y, Lee AT et al (2008) Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 283(19):13205鈥?3215CrossRef PubMed
    39.Huang XH, Wang Q et al (2009) Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated. Hepatol Res 39(8):786鈥?94CrossRef PubMed
    40.Childs G, Fazzari M et al (2009) Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol 174(3):736鈥?45PubMed Central CrossRef PubMed
    41.Gramantieri L, Ferracin M et al (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67(13):6092鈥?099CrossRef PubMed
    42.Chen X, Cheung ST et al (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13(6):1929鈥?939PubMed Central CrossRef PubMed
  • 作者单位:Yingying Wang (1)
    Yunpeng Cai (1)
    Yingbo Miao (2)

    1. Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
    2. College of Pharmacy, Nankai University, Tianjin, China
  • 刊物主题:Computer Appl. in Life Sciences; Computational Biology/Bioinformatics; Statistics for Life Sciences, Medicine, Health Sciences; Theoretical and Computational Chemistry; Theoretical, Mathematical and Computational Physics; Computational Science and Engineering;
  • 出版者:International Association of Scientists in the Interdisciplinary Areas
  • ISSN:1867-1462
文摘
Cancer is a complex disease arises from combinations of changes that occur over a period of time. With the development of bioinformatics, more and more biomarkers representing changes in cancers had been identified using gene expression profiles. However, biomarkers alone are quite limited in explaining the molecular processes occurred in the due process. In this paper, we develop an evolving-pattern analysis pipeline for in-depth studies of gene expression changes during different disease stages, choosing hepatocellular carcinoma (HCC) as a case. Enrichment analyses were performed on three levels: functional terms, validated genes, and regulation factors for all the biomarkers to find out their biological characters. Our results show that biomarkers with distinct evolving patterns exhibit quite different characteristics on functional and regulation levels. For the case of HCC, transient biomarkers are mostly annotated to metabolic processes, while long-term biomarkers are mostly annotated to regulation processes, with a larger number of enriched regulation factors. Furthermore, our pipeline reveals the important roles of microRNAs in various evolving patterns, which are known to be closely related to HCC. These results confirm that evolving-pattern analysis may provide a new sight for in-depth studies of biomarkers and diseases. Keywords Transient biomarker Long-term biomarker Functional term HCC Cirrhosis microRNA

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700