miR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting Onecut2 in colorectal carcinoma
详细信息    查看全文
  • 作者:Yingnan Sun (1) (2)
    Shourong Shen (1) (2)
    Xiaoping Liu (3) (4)
    Hailin Tang (3) (4)
    Zeyou Wang (1) (3)
    Zhibin Yu (1) (3)
    Xiayu Li (1) (2)
    Minghua Wu (1) (3)
  • 关键词:miRNA ; miR ; 429 ; Colorectal carcinoma ; TGF ; β1 ; Snail ; ZEB2
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:390
  • 期:1-2
  • 页码:19-30
  • 全文大小:8,759 KB
  • 参考文献:1. Gill S, Thomas RR, Goldberg RM (2003) Colorectal cancer chemotherapy. Aliment Pharmacol Ther 18:683-92 CrossRef
    2. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796:293-08. doi:10.1016/j.bbcan.2009.07.006
    3. Guarino M (2007) Epithelial–mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153-160 CrossRef
    4. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial–mesenchymal transition in development and disease. Cell 139:871-90. doi:10.1016/j.cell.2009.11.007 CrossRef
    5. Said NA, Williams ED (2011) Growth factors in induction of epithelial–mesenchymal transition and metastasis. Cells Tissues Organs 193:85-7. doi:10.1159/000320360 CrossRef
    6. Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818-29. doi:10.1016/j.devcel.2008.05.009 CrossRef
    7. Miyazono K (2009) Transforming growth factor-beta signaling in epithelial–mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85:314-23 CrossRef
    8. Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223:14-6. doi:10.1002/jcp.22011
    9. Karlsson R, Pedersen ED, Wang Z, Brakebusch C (2009) Rho GTPase function in tumorigenes. Biochim Biophys Acta 1796:91-8. doi:10.1016/j.bbcan.2009.03.003
    10. Vincan E, Barker N (2008) The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis 25:657-63. doi:10.1007/s10585-008-9156-4 CrossRef
    11. Kang Y, Massague J (2004) Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118:277-79 CrossRef
    12. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and Bhlh factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415-28 CrossRef
    13. Ayyanathan K, Peng H, Hou Z, Fredericks WJ, Goyal RK, Langer EM, Longmore GD, Rauscher FJ 3rd (2007) The Ajuba LIM domain protein is a corepressor for SNAG domain mediated repression and participates in nucleocytoplasmic Shuttling. Cancer Res 67:9097-106 CrossRef
    14. Langer EM, Feng Y, Zhaoyuan H, Rauscher FJ 3rd, Kroll KL, Longmore GD (2008) Ajuba LIM proteins are snail/slug corepressors required for neural crest development in Xenopus. Dev Cell 14:424-36. doi:10.1016/j.devcel.2008.01.005 CrossRef
    15. Min C, Eddy SF, Sherr DH, Sonenshein GE (2008) NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104:733-44. doi:10.1002/jcb.21695 CrossRef
    16. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26:711-24 CrossRef
    17. Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, Martin P, Kelly K (2013) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32:296-06. doi:10.1038/onc.2012.58 CrossRef
    18. Moes M, Le Béchec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A, Friederich E (2012) A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS One 7:e35440. doi:10.1371/journal.pone.0035440 CrossRef
    19. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SP1. Nat Cell Biol 10:593-01. doi:10.1038/ncb1722 CrossRef
    20. Gregory PA, Bracken CP, Bert AG, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) MicroRNAs as regulators of epithelial–mesenchymal transitions. Cell Cycle 7:112-18. doi:10.1038/ncb1722 CrossRef
    21. Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial–mesenchymal transition and cancer metastasis. RNA Biol 5:115-19 CrossRef
    22. Paterson EL, Kolesnikoff N, Gregory PA, Bert AG, Khew-Goodall Y, Goodall GJ (2008) The microRNA-200 family regulates epithelial to mesenchymal transition. Sci World J 8:901-04. doi:10.1100/tsw.2008.115 CrossRef
    23. Park S-M, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894-07. doi:10.1101/gad.1640608 CrossRef
    24. Sun Y, Shen S, Tang H, Xiang J, Peng Y, Tang A, Li N, Zhou W, Wang Z, Zhang D, Xiang B, Ge J, Li G, Wu M, Li X (2013) miR-429 identified by dynamic transcriptome analysis is a new candidate biomarker for colorectal cancer prognosis. OMICS [Epub ahead of print]
    25. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1–SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res 68:7846-854. doi:10.1158/0008-5472.CAN-08-1942 CrossRef
    26. Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, Liao Q, Guo X, Wang R, Li X, Zeng F, Wu M, Li G (2011) Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res 1390:21-2. doi:10.1016/j.brainres.2011.03.034 CrossRef
    27. Bertocchi C, Vaman Rao M, Zaidel-Bar R (2012) Regulation of adherens junction dynamics by phosphorylation switches. J Signal Transduct 2012:125295. doi:10.1155/2012/125295 CrossRef
    28. Shan Y, Zhang L, Bao Y, Li B, He C, Gao M, Feng X, Xu W, Zhang X, Wang S (2013) Epithelial–mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells. J Nutr Biochem 24:1062-069. doi:10.1016/j.jnutbio.2012.08.004 CrossRef
    29. La Fleur L, Johansson AC, Roberg K (2012) A CD44high/EGFRlow subpopulation within head and neck cancer cell lines shows an epithelial–mesenchymal transition phenotype and resistance to treatment. PLoS One 7:e44071. doi:10.1371/journal.pone.0044071 CrossRef
    30. Bockhorn J, Dalton R, Nwachukwu C, Huang S, Prat A, Yee K, Chang YF, Huo D, Wen Y, Swanson KE, Qiu T, Lu J, Park SY, Dolan ME, Perou CM, Olopade OI, Clarke MF, Greene GL, Liu H (2013) MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun 4:1393. doi:10.1038/ncomms2393 CrossRef
    31. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9-6. doi:10.1016/j.devcel.2009.06.016 CrossRef
    32. Slabáková E, Pernicová Z, Slaví?ková E, Star?íchová A, Kozubík A, Sou?ek K (2011) TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate 71:1332-343. doi:10.1002/pros.21350
  • 作者单位:Yingnan Sun (1) (2)
    Shourong Shen (1) (2)
    Xiaoping Liu (3) (4)
    Hailin Tang (3) (4)
    Zeyou Wang (1) (3)
    Zhibin Yu (1) (3)
    Xiayu Li (1) (2)
    Minghua Wu (1) (3)

    1. Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, People’s Republic of China
    2. Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People’s Republic of China
    3. Cancer Research Institute; Disease Genome Research Center; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, Ministry of Health, Central South University, Changsha, Hunan, People’s Republic of China
    4. Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
  • ISSN:1573-4919
文摘
The 5-year survival rate for colorectal cancer is approximately 55?% because of its invasion and metastasis. The epithelial–mesenchymal transition (EMT) is one of the well-defined processes during the invasion and distant metastasis of primary epithelial tumors. miR-429, a member of the miR-200 family of microRNAs, was previously shown to inhibit the expression of transcriptional repressors ZEB1/delta EF1 and SIP1/ZEB2, and regulate EMT. In this study, we showed that miR-429 was significantly downregulated in colorectal carcinoma (CRC) tissues and cell lines. We found that miR-429 inhibited the proliferation and growth of CRC cells in vitro and in vivo, suggesting that miR-429 could play a role in CRC tumorigenesis. We also showed that downregulation of miR-429 may contribute to carcinogenesis and the initiation of EMT of CRC by targeting Onecut2. Further researches indicated that miR-429 inhibited the cells migration and invasion and reversed TGF-β-induced EMT changes in SW620 and SW480 cells. miR-429 could reverse the change of EMT-related markers genes induced by TGF-β1, such as E-cadherin, CTNNA1, CTNNB1, TFN, CD44, MMP2, Vimentin, Slug, Snail, and ZEB2 by targeting Onecut2. Taken together, our data showed that transcript factor Onecut2 is involved in the EMT, migration and invasion of CRC cells; miR-429 inhibits the initiation of EMT and regulated expression of EMT-related markers by targeting Onecut2; and miR-429 or Onecut2 is the important therapy target for CRC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700