Plasmonic Effect of a Nanoshell Dimer with Different Gain Materials
详细信息    查看全文
  • 作者:Qiao Wang (1)
    Shi Pan (1)
    Yingnan Guo (1)
    Rui Li (1)
    Kun Liu (1)
  • 关键词:Nanoshell dimer ; Gain material ; Plasmonic effect ; Local energy enhancement
  • 刊名:Plasmonics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:6
  • 页码:1463-1469
  • 全文大小:780 KB
  • 参考文献:1. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193鈥?04 CrossRef
    2. Halas NJ (2010) Plasmonics: an emerging field fostered by nano letters. Nano Lett 10:3816鈥?822 CrossRef
    3. Lin WC, Liao LS, Chen YH, Chang HC, Tsai DP, Chiang HP (2011) Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6:201鈥?06 CrossRef
    4. Wen X, Xi Z, Jiao X, Yu W, Xue G, Zhang D, Lu Y, Wang P, Blair S, Ming H (2013) Plasmonic coupling effect in Ag nanocap鈥搉anohole pairs for surface-enhanced Raman scattering. Plasmonics 8:225鈥?31 CrossRef
    5. Dillu V, Sinha R (2013) Surface plasmon polariton band gap-enabled plasmonic Mach鈥揨ehnder interferometer: design, analysis, and application. Plasmonics. doi:10.1007/s11468-013-96 52-5
    6. Noginov M, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo B, Drachev V, Shalaev V (2006) Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt Lett 31:3022鈥?024 CrossRef
    7. Noginov M, Zhu G, Mayy M, Ritzo B, Noginova N, Podolskiy V (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806 CrossRef
    8. Noginov M, Podolskiy V, Zhu G, Mayy M, Bahoura M, Adegoke J, Ritzo B, Reynolds K (2008) Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt Express 16:385鈥?392 CrossRef
    9. Grandidier J, Francs GCD, Massenot S, Bouhelier A, Markey L, Weeber JC, Finot C, Dereux A (2009) Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett 9:2935鈥?939 CrossRef
    10. Gather MC, Meerholz K, Danz N, Leosson K (2010) Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photon 4:457鈥?61 CrossRef
    11. Li ZY, Xia Y (2010) Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 10:243鈥?49 CrossRef
    12. Zhang H, Zhou J, Zou W, He M (2012) Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser. J Appl Phys 112:074309 CrossRef
    13. Klimov VI (2003) Nanocrystal quantum dots. Los Alamos Sci 28:214鈥?20
    14. Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A (2007) Single-exciton optical gain in semiconductor nanocrystals. Nature 447:441鈥?46 CrossRef
    15. Ambati M, Nam SH, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Observation of stimulated emission of surface plasmon polaritons. Nano Lett 8:3998鈥?001 CrossRef
    16. Xu H, Bjerneld EJ, K盲ll M, B枚rjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357鈥?360 CrossRef
    17. Li W, Camargo PH, Lu X, Xia Y (2008) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9:485鈥?90 CrossRef
    18. McMahon JM, Gray SK, Schatz GC (2010) Optical properties of nanowire dimers with a spatially nonlocal dielectric function. Nano Lett 10:3473鈥?481 CrossRef
    19. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3:2776鈥?788 CrossRef
    20. Alber I, Sigle W, M眉ller S, Neumann R, Picht O, Rauber M, Aken PAV, Toimil-Molares ME (2011) Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. ACS Nano 5:9845鈥?853 CrossRef
    21. Jackson J, Westcott S, Hirsch L, West J, Halas N (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82:257 CrossRef
    22. Barhoumi A, Zhang D, Tam F, Halas NJ (2008) Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 130:5523鈥?529 CrossRef
    23. Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33鈥?0 CrossRef
    24. Loo C, Lowery A, Halas NJ, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709鈥?11 CrossRef
    25. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854鈥?858 CrossRef
    26. Kittel C, McEuen P (1986) Introduction to solid state physics. Wiley, New York
    27. Kawata S (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin CrossRef
    28. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York
    29. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153鈥?64 CrossRef
    30. Chau YF, Yeh HH, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557鈥?561 CrossRef
    31. Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC, Boca Raton
    32. Nordlander P, Oubre C, Prodan E, Li K, Stockman M (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899鈥?03 CrossRef
    33. Payne SA, Chase LL, Smith LK, Kway WL, Krupke WF (1992) Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE J Quantum Electron 28:2619鈥?630 CrossRef
    34. DeLoach LD, Payne SA, Chase LL, Smith LK, Kway WL, Krupke WF (1993) Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications. IEEE J Quantum Electron 19:1179鈥?191 CrossRef
    35. Kenyon AJ, Chryssou CE, Pitt CW, Shimizu-Iwayama T, Hole DE, Sharma N, Humphreys CJ (2002) Luminescence from erbium-doped silicon nanocrystals in silica: excitation mechanisms. J Appl Phys 91:367鈥?74 CrossRef
    36. Pisignano D, Anni M, Gigli G, Cingolani R, Zavelani-Rossi M, Lanzani G, Barbarella G, Favaretto L (2002) Amplified spontaneous emission and efficient tunable laser emission from a substituted thiophene-based oligomer. Appl Phys Lett 81:3534鈥?536 CrossRef
    37. Digonnet MJF (2001) Rare-earth-doped fiber lasers and amplifiers. CRC, New York CrossRef
    38. Griffiths DJ, College R (1999) Introduction to electrodynamics. Prentice Hall, New Jersey
  • 作者单位:Qiao Wang (1)
    Shi Pan (1)
    Yingnan Guo (1)
    Rui Li (1)
    Kun Liu (1)

    1. Institute of Near-field Optics and Nano-technology, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian, 116024, China
  • ISSN:1557-1963
文摘
Though the plasmonic property for a passive nanoparticle dimer has been studied widely, the performance of a nanoparticle dimer with gain material is still inexplicit to our knowledge. Therefore, in this paper, we focus on the plasmonic effect of a nanoshell dimer, with its core filled with different gain materials, under a polarized plane wave excitation using a three-dimensional finite difference time domain method. It is shown that the gain materials in the core of the nanoshell can compensate the intrinsic absorption of the metal shell, resulting in a local energy enhancement in the junction of the active nanoshell dimer. The physics is supported by the detailed energy distribution of the active nanoshell dimer in each geometry region. It is found that the plasmonic coupling between two active nanoshell particles is more compact than the case of passive ones. The influence of shell thickness on the interaction between two adjacent active nanoshells is also analyzed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700