Approaches for improving the performance of filament-type resistive switching memory
详细信息    查看全文
  • 作者:WenTai Lian (1) (2)
    ShiBing Long (1)
    HangBing Lü (1)
    Qi Liu (1) (2)
    YingTao Li (1)
    Sen Zhang (1)
    Yan Wang (1)
    ZongLiang Huo (1)
    YueHua Dai (2)
    JunNing Chen (2)
    Ming Liu (1)
  • 关键词:non ; volatile memory ; resistive random access memory (RRAM) ; conductive filament (CF)
  • 刊名:Chinese Science Bulletin
  • 出版年:2011
  • 出版时间:February 2011
  • 年:2011
  • 卷:56
  • 期:4-5
  • 页码:461-464
  • 全文大小:551KB
  • 参考文献:1. Waser R. Resistive non-volatile memory devices. Microelectron Eng, 2009, 86: 1925-928 CrossRef
    2. Kund M, Beitel G, Pinnow C U, et al. Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm. IEDM Tech Dig, 2005, 773-76
    3. Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80-3 CrossRef
    4. Yang Y C, Pan F, Liu Q, et al. Fully room-remperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 1636-643
    5. Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanfilaments in TiO2 resistive switching memory. Nat Nanotech, 2010, 5: 148-53 CrossRef
    6. Liu Q, Guan W H, Long S B, et al. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl Phys Lett, 2008, 92: 012117 CrossRef
    7. Liu Q, Guan W H, Long S B, et al. Resistive switching of Au-implanted-ZrO2 film for nonvolatile memory application. J Appl Phys, 2008, 104: 114514 CrossRef
    8. Guan W H, Liu M, Long S B, et al. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl Phys Lett, 2008, 93: 223506 CrossRef
    9. Liu Q, Liu M, Long S B, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted metal ions. In: Proc ESSDERC, 2009. 221-24
    10. Liu Q, Long S B, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. IEEE Electron Device Lett, 2009, 30: 1335-337 CrossRef
    11. Schindler C, Thermadam S C R, Waser R, et al. Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans Electron Device, 2007, 54: 2762-768 CrossRef
    12. Lee D, Hwang D K, Chang M, et al. Resistance switching of Al doped ZnO for non volatile memory applications. In: Proc NVSMW, 2006. 86-7
    13. Dearnaley G, Stoneham A M, Morgan D V, et al. Electrical phenomenona in amorphous oxide films. Rep Prog Phys, 1970, 33: 1129-191 CrossRef
    14. Tsunoda K, Kinoshita K, Noshiro H, et al. Low power and high speed switching of Ti-doped NiO RRAM under the unipolar voltage source of less than 3 V. IEDM Tech Dig, 2007, 767
    15. Jung K, Choi J, Kim Y, et al. Resistance switching characteristics in Li-doped NiO. J Appl Phys, 2008, 103: 034504 CrossRef
    16. Gao B, Zhang H W, Yu S, et al. Oxide-Based RRAM: Uniformity improvement using a new material-oriented methodology. VLSI Tech Dig, 2009, 30-1
    17. Park J W, Park J W, Jung K, et al. Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications. J Vac Sci Technol, 2006, 24: 2205-208 CrossRef
    18. Jung R, Lee M J, Seo S, et al. Decrease in switching voltage fluctuation of Pt/NiOx/Pt structure by process control. Appl Phys Lett, 2007, 91: 022112 CrossRef
    19. Lin C Y, Lee D Y, Wang S Y, et al. Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices. Surface Coati Tech, 2008: 628-31
    20. Bockris, John O’M R. Modern Electrochemistry. New york: Planum Press, 1998
    21. Lin C Y, Wu C Y, Wu C Y, et al. Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J Appl Phys, 2007, 102: 094101 CrossRef
    22. Lin C Y, Wu C Y, Wu C Y, et al. Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Electron Device Lett, 2007, 28: 366-68 CrossRef
    23. Lv H B, Wang M, Wan H J, et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode. Appl Phys Lett, 2009, 94: 213502 CrossRef
    24. Kwak J S, Do Y H, Bae Y C, et al. Roles of interfacial TiOxN1?em class="a-plus-plus">x layer and TiN electrode on bipolar resistive switching in TiN/TiO2/TiN frameworks. Appl Phys Lett, 2010, 96: 223502 CrossRef
    25. Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin buffer layer in robust HfO2 Based RRAM. IEDM Tech, 2008, 1-
    26. Chen Y S, Lee H Y, Chen P S, et al. Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity. IEDM Tech, 2009, 1-
  • 作者单位:WenTai Lian (1) (2)
    ShiBing Long (1)
    HangBing Lü (1)
    Qi Liu (1) (2)
    YingTao Li (1)
    Sen Zhang (1)
    Yan Wang (1)
    ZongLiang Huo (1)
    YueHua Dai (2)
    JunNing Chen (2)
    Ming Liu (1)

    1. Laboratory of Nano-Fabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
    2. College of Electronics and Technology, Anhui University, Hefei, 230039, China
  • ISSN:1861-9541
文摘
Resistive random access memory (RRAM) has received significant research interest because of its promising potential in terms of down-scaling, high density, high speed and low power. However, its endurance, retention and uniformity are still imperfect. In this article, the physical mechanisms of filament-type RRAM and the approaches for improving the switching performance, including doping, process optimization and interface engineering, are introduced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700