Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model
详细信息    查看全文
  • 作者:Yang Yan (1)
    Yingxin Xu (1)
    Yunshan Zhao (1)
    Li Li (1)
    Peiming Sun (1)
    Hailiang Liu (1)
    Qinghao Fan (1)
    Kai Liang (1)
    Wentao Liang (1)
    Huiwei Sun (1)
    Xiaohui Du (1) (2)
    Rong Li (1) (2)
  • 关键词:E2F ; 1 ; CIK cell ; Orthotopic rectal cancer
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:35
  • 期:2
  • 页码:1113-1122
  • 全文大小:744 KB
  • 参考文献:1. Rullier E, Denost Q, Vendrely V, Rullier A, Laurent C. Low rectal cancer: classification and standardization of surgery. Dis Colon Rectum. 2013;56:560鈥?. CrossRef
    2. McKenzie SP, Barnes SL, Schwartz RW. An update on the surgical management of rectal cancer. Curr Surg. 2005;62:407鈥?1. CrossRef
    3. Arrazubi V, Suarez J, Novas P, Perez-Hoyos MT, Vera R, Martinez DPP. Chemoradiation of rectal cancer. Minerva Chir. 2013;68:11鈥?6.
    4. Kolodkin-Gal D, Edden Y, Hartshtark Z, Ilan L, Khalaileh A, Pikarsky AJ, et al. Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Ther. 2009;16:905鈥?5. CrossRef
    5. Lanson NJ, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res. 2003;63:7936鈥?1.
    6. Gupta VK, Park JO, Kurihara T, Koons A, Mauceri HJ, Jaskowiak NT, et al. Selective gene expression using a df3/muc1 promoter in a human esophageal adenocarcinoma model. Gene Ther. 2003;10:206鈥?2. CrossRef
    7. Zacharatos P, Kotsinas A, Evangelou K, Karakaidos P, Vassiliou LV, Rezaei N, et al. Distinct expression patterns of the transcription factor e2f-1 in relation to tumour growth parameters in common human carcinomas. J Pathol. 2004;203:744鈥?3. CrossRef
    8. Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, et al. Transcription factor e2f-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002;198:142鈥?6. CrossRef
    9. Nielsen NH, Loden M, Cajander J, Emdin SO, Landberg G. G1-s transition defects occur in most breast cancers and predict outcome. Breast Cancer Res Treat. 1999;56:105鈥?2. CrossRef
    10. Zhang SY, Liu SC, Al-Saleem LF, Holloran D, Babb J, Guo X, et al. E2f-1: a proliferative marker of breast neoplasia. Cancer Epidemiol Biomarkers Prev. 2000;9:395鈥?01.
    11. Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C, et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on e1a, the e2f-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 2003;63:1490鈥?.
    12. Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM. An e2f-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res. 2002;62:3438鈥?7.
    13. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. Cg0070, a conditionally replicating granulocyte macrophage colony-stimulating factor鈥揳rmed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12:305鈥?3. CrossRef
    14. Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, et al. A first in human phase 1 study of cg0070, a gm-csf expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012;188:2391鈥?. CrossRef
    15. Crompton AM, Kirn DH. From onyx-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets. 2007;7:133鈥?. CrossRef
    16. Li Y, Yu DC, Chen Y, Amin P, Zhang H, Nguyen N, et al. A hepatocellular carcinoma-specific adenovirus variant, cv890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 2001;61:6428鈥?6.
    17. Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimaki A, Halavaara J, Desmond RA, et al. Macrophage metalloelastase (mme) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther. 2012;19:126鈥?4. CrossRef
    18. Wang H, Wei F, Li H, Ji X, Li S, Chen X. Combination of oncolytic adenovirus and endostatin inhibits human retinoblastoma in an in vivo mouse model. Int J Mol Med. 2013;31:377鈥?5.
    19. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411鈥?2. CrossRef
    20. DeVita VJ, Rosenberg SA. Two hundred years of cancer research. N Engl J Med. 2012;366:2207鈥?4. CrossRef
    21. Li R, Wang C, Liu L, Du C, Cao S, Yu J, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase ii clinical study. Cancer Immunol Immunother. 2012;61:2125鈥?3. CrossRef
    22. Liu L, Zhang W, Qi X, Li H, Yu J, Wei S, et al. Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res. 2012;18:1751鈥?. CrossRef
    23. Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 2013;20:70鈥?. CrossRef
    24. Yang Z, Zhang Q, Xu K, Shan J, Shen J, Liu L, et al. Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing il-12 induce enhanced antitumor activity in liver tumor model. PLoS One. 2012;7:e44802. CrossRef
    25. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999;10:1721鈥?3. CrossRef
    26. Wu YM, Zhang KJ, Yue XT, Wang YQ, Yang Y, Li GC, et al. Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying mda-7/il-24. Acta Pharmacol Sin. 2009;30:467鈥?7. CrossRef
    27. Du X, Jin R, Ning N, Li L, Wang Q, Liang W, et al. In vivo distribution and antitumor effect of infused immune cells in a gastric cancer model. Oncol Rep. 2012;28:1743鈥?.
    28. Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72:1853鈥?4. CrossRef
    29. Donigan M, Norcross LS, Aversa J, Colon J, Smith J, Madero-Visbal R, et al. Novel murine model for colon cancer: non-operative trans-anal rectal injection. J Surg Res. 2009;154:299鈥?03. CrossRef
    30. Kishimoto H, Kojima T, Watanabe Y, Kagawa S, Fujiwara T, Uno F, et al. In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus. Nat Med. 2006;12:1213鈥?. CrossRef
    31. Tsutsumi S, Kuwano H, Morinaga N, Shimura T, Asao T. Animal model of para-aortic lymph node metastasis. Cancer Lett. 2001;169:77鈥?5. CrossRef
    32. Nettelbeck DM. Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med (Berlin). 2008;86:363鈥?7. CrossRef
    33. Stevaux O, Dyson NJ. A revised picture of the e2f transcriptional network and rb function. Curr Opin Cell Biol. 2002;14:684鈥?1. CrossRef
    34. Harbour JW, Dean DC. The rb/e2f pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14:2393鈥?09. CrossRef
    35. Sherr CJ, McCormick F. The rb and p53 pathways in cancer. Cancer Cell. 2002;2:103鈥?2. CrossRef
    36. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E. Expression of the e2f family in human gastrointestinal carcinomas. Int J Cancer. 1999;81:535鈥?. CrossRef
    37. Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, Korkolis DP, et al. E2f-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res. 2004;24:3041鈥?.
    38. Palaiologou M, Koskinas J, Karanikolas M, Fatourou E, Tiniakos DG. E2f-1 is overexpressed and pro-apoptotic in human hepatocellular carcinoma. Virchows Arch. 2012;460:439鈥?6. CrossRef
    39. Rojas JJ, Cascallo M, Guedan S, Gros A, Martinez-Quintanilla J, Hemminki A, et al. A modified e2f-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Ther. 2009;16:1441鈥?1. CrossRef
    40. Hao H, Dong YB, Bowling MT, Zhou HS, McMasters KM. Alteration of gene expression in melanoma cells following combined treatment with e2f-1 and doxorubicin. Anticancer Res. 2006;26:1947鈥?6.
    41. Wojton J, Kaur B. Impact of tumor microenvironment on oncolytic viral therapy. Cytokine Growth Factor Rev. 2010;21:127鈥?4. CrossRef
    42. Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8:1581鈥?. CrossRef
    43. Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG. Clinical trials on cik cells: first report of the international registry on cik cells (ircc). J Cancer Res Clin Oncol. 2011;137:305鈥?0. CrossRef
    44. Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, et al. Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy. 2009;11:1076鈥?3. CrossRef
    45. Thorne SH, Negrin RS, Contag CH. Synergistic antitumor effects of immune cell-viral biotherapy. Science. 2006;311:1780鈥?. CrossRef
    46. Sampath P, Li J, Hou W, Chen H, Bartlett DL, Thorne SH. Crosstalk between immune cell and oncolytic vaccinia therapy enhances tumor trafficking and antitumor effects. Mol Ther. 2013;21:620鈥?. CrossRef
  • 作者单位:Yang Yan (1)
    Yingxin Xu (1)
    Yunshan Zhao (1)
    Li Li (1)
    Peiming Sun (1)
    Hailiang Liu (1)
    Qinghao Fan (1)
    Kai Liang (1)
    Wentao Liang (1)
    Huiwei Sun (1)
    Xiaohui Du (1) (2)
    Rong Li (1) (2)

    1. Institute of General Surgery, Chinese PLA General Hospital, Beijing, People鈥檚 Republic of China
    2. General Surgery Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People鈥檚 Republic of China
  • ISSN:1423-0380
文摘
Due to the anatomical structure of the rectum, the treatment of rectal cancer remains challenging. Ad-E2F, an oncolytic adenovirus containing the E2F-1 promoter, can selectively replicate within and kill cancer cells derived from solid tumors. Thus, this virus provides a novel approach for the treatment of rectal cancer. Given the poor efficacy and possible adverse reactions that arise from the use of oncolytic virus alone and the results of our analysis of the efficacy of Ad-E2F in the treatment of rectal cancer, we investigated the use of oncolytic adenovirus in combination with adoptive immunotherapy using cytokine-induced killer (CIK) cells as a therapeutic treatment for rectal cancer. Our results illustrated that E2F-1 gene expression is higher in rectal cancer tissue than in normal tissue. Furthermore, the designed oncolytic adenovirus Ad-E2F is capable of selectively killing colorectal cell lines but has no significant effect on CIK cells. The results of in vitro and in vivo experiments demonstrated that combined therapy with Ad-E2F and CIK cells produce stronger antitumor effects than the administration of Ad-E2F or CIK cells alone. For low rectal cancers that are suitable for intratumoral injection, local injections of oncolytic viruses in combination with CIK cell-based adoptive immunotherapy may be suitable as a novel comprehensive therapeutic approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700