The association of phosphatase and tensin homolog deleted on chromosome 10 polymorphisms and lifestyle habits with colorectal cancer risk in a Chinese population
详细信息    查看全文
  • 作者:Fangyuan Jing ; Yingying Mao ; Zhenyu Zhang ; Yingjun Li ; Shaofang Cai
  • 关键词:PTEN ; Single ; nucleotide polymorphism ; Colorectal cancer ; Susceptibility
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:35
  • 期:9
  • 页码:9233-9240
  • 全文大小:174 KB
  • 参考文献:1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11-0. CrossRef
    2. Dai Z, Zheng RS, Zou XN, Zhang SW, Zeng HM, Li N, et al. [Analysis and prediction of colorectal cancer incidence trend in China]. Zhonghua Yu Fang Yi Xue Za Zhi. 2012;46(7):598-03.
    3. Zhang S, Cui Y, Weng Z, Gong X, Chen M, Zhong B. Changes on the disease pattern of primary colorectal cancers in Southern China: a retrospective study of 20?years. Int J Colorectal Dis. 2009;24(8):943-. CrossRef
    4. Phipps AI, Baron J, Newcomb PA. Prediagnostic smoking history, alcohol consumption, and colorectal cancer survival: the Seattle Colon Cancer Family Registry. Cancer. 2011;117(21):4948-7. CrossRef
    5. Leufkens AM, Van Duijnhoven FJ, Siersema PD, Boshuizen HC, Vrieling A, Agudo A, et al. Cigarette smoking and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study. Clin Gastroenterol Hepatol. 2011;9(2):137-4. CrossRef
    6. Wang ZH, Gao QY, Fang JY. Green tea and incidence of colorectal cancer: evidence from prospective cohort studies. Nutr Cancer. 2012;64(8):1143-2. CrossRef
    7. Wang XJ, Zeng XT, Duan XL, Zeng HC, Shen R, Zhou P. Association between green tea and colorectal cancer risk: a meta-analysis of 13 case-control studies. Asian Pac J Cancer Prev. 2012;13(7):3123-. CrossRef
    8. Zhang Y, Liu B, Jin M, Ni Q, Liang X, Ma X, et al. Genetic polymorphisms of transforming growth factor-beta1 and its receptors and colorectal cancer susceptibility: a population-based case-control study in China. Cancer Lett. 2009;275(1):102-. CrossRef
    9. Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schafer KL, et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 2013;8(3):e59689. CrossRef
    10. Valtorta E, Misale S, Sartore-Bianchi A, Nagtegaal ID, Paraf F, Lauricella C, Dimartino V, Hobor S, Jacobs B, Ercolani C et al: KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int J Cancer 2013.
    11. Zhou C, Tong Y, Wawrowsky K, Melmed S: PTTG acts as a STAT3 target gene for colorectal cancer cell growth and motility. Oncogene 2013.
    12. Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene. 2008;27(41):5443-3. CrossRef
    13. Wang X, Jiang X. PTEN: a default gate-keeping tumor suppressor with a versatile tail. Cell Res. 2008;18(8):807-6. CrossRef
    14. Bedolla R, Prihoda TJ, Kreisberg JI, Malik SN, Krishnegowda NK, Troyer DA, et al. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res. 2007;13(13):3860-. CrossRef
    15. Westekemper H, Karimi S, Susskind D, Anastassiou G, Freistuhler M, Steuhl KP, et al. Expression of HSP 90, PTEN and Bcl-2 in conjunctival melanoma. Br J Ophthalmol. 2011;95(6):853-. CrossRef
    16. Khaleghpour K, Li Y, Banville D, Yu Z, Shen SH. Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis. 2004;25(2):241-. CrossRef
    17. Mao C, Zhou J, Yang Z, Huang Y, Wu X, Shen H, et al. KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer. PLoS One. 2012;7(5):e36653. CrossRef
    18. Guanti G, Resta N, Simone C, Cariola F, Demma I, Fiorente P, et al. Involvement of PTEN mutations in the genetic pathways of colorectal cancerogenesis. Hum Mol Genet. 2000;9(2):283-. CrossRef
    19. Carroll BT, Couch FJ, Rebbeck TR, Weber BL. Polymorphisms in PTEN in breast cancer families. J Med Genet. 1999;36(2):94-.
    20. Chen M, Cassidy A, Gu J, Delclos GL, Zhen F, Yang H, et al. Genetic variations in PI3K-AKT-mTOR pathway and bladder cancer risk. Carcinogenesis. 2009;30(12):2047-2. CrossRef
    21. Chen J, Shao P, Cao Q, Li P, Li J, Cai H, et al. Genetic variations in a PTEN/AKT/mTOR axis and prostate cancer risk in a Chinese population. PLoS One. 2012;7(7):e40817. CrossRef
    22. Starinsky S, Figer A, Ben-Asher E, Geva R, Flex D, Fidder HH, et al. Genotype phenotype correlations in Israeli colorectal cancer patients. Int J Cancer. 2005;114(1):58-3. CrossRef
    23. Kim JG, Chae YS, Sohn SK, Kang BW, Moon JH, Lee SJ, et al. Clinical significance of genetic variations in the PI3K/PTEN/AKT/mTOR pathway in Korean patients with colorectal cancer. Oncology. 2010;79(3-):278-2. CrossRef
    24. Slattery ML, Herrick JS, Lundgreen A, Fitzpatrick FA, Curtin K, Wolff RK. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis. 2010;31(9):1604-1. CrossRef
    25. Phillips LS, Thompson CL, Merkulova A, Plummer SJ, Tucker TC, Casey G, et al. No association between phosphatase and tensin homolog genetic polymorphisms and colon cancer. World J Gastroenterol. 2009;15(30):3771-. CrossRef
    26. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-. CrossRef
    27. Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20(7):575-. CrossRef
    28. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1-):279-4. CrossRef
    29. Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution of / Caenorhabditis elegans 3′UTRs. Nature. 2011;469(7328):97-01. CrossRef
    30. Fang Z, Rajewsky N. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One. 2011;6(3):e18067. CrossRef
    31. Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics. 2012;13:44. CrossRef
    32. Wu Y, Jin M, Liu B, Liang X, Yu Y, Li Q, et al. The association of XPC polymorphisms and tea drinking with colorectal cancer risk in a Chinese population. Mol Carcinog. 2011;50(3):189-8. CrossRef
    33. Xu WH, Dai Q, Xiang YB, Long JR, Ruan ZX, Cheng JR, et al. Interaction of soy food and tea consumption with CYP19A1 genetic polymorphisms in the development of endometrial cancer. Am J Epidemiol. 2007;166(12):1420-0. CrossRef
    34. Ding J, Gao Y, Liu R, Xu F, Liu H. Association of PTEN polymorphisms with susceptibility to hepatocellular carcinoma in a Han Chinese population. DNA Cell Biol. 2011;30(4):229-4. CrossRef
    35. Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A. Critical association of ncRNA with introns. Nucleic Acids Res. 2011;39(6):2357-6. CrossRef
    36. Roy SW, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006;7(3):211-1.
    37. Hakim IA, Chow HH, Harris RB. Green tea consumption is associated with decreased DNA damage among GSTM1-positive smokers regardless of their hOGG1 genotype. J Nutr. 2008;138(8):1567S-1S.
    38. Kawai Y, Matsui Y, Kondo H, Morinaga H, Uchida K, Miyoshi N, et al. Galloylated catechins as potent inhibitors of hypochlorous acid-induced DNA damage. Chem Res Toxicol. 2008;21(7):1407-4. CrossRef
    39. Kuzuhara T, Tanabe A, Sei Y, Yamaguchi K, Suganuma M, Fujiki H. Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins. Mol Carcinog. 2007;46(8):640-. CrossRef
    40. Xu YY, Jin HY, Tan XZ, Liu XF, Ding YJ. [Tea polyphenol inhibits colorectal cancer with microsatellite instability by regulating the expressions of HES1, JAG1, MT2A and MAFA]. Zhong Xi Yi Jie He Xue Bao. 2010;8(9):870-. CrossRef
  • 作者单位:Fangyuan Jing (1)
    Yingying Mao (1)
    Zhenyu Zhang (1)
    Yingjun Li (1)
    Shaofang Cai (1)
    Qilong Li (2)
    Xinyuan Ma (2)
    Mingjuan Jin (1)
    Kun Chen (1)

    1. Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
    2. Institute for Cancer Prevention of Jiashan County, Jiashan, Zhejiang, China
  • ISSN:1423-0380
文摘
The PI3K signaling pathway plays an important role in the development of colorectal cancer (CRC) and other neoplasm. Somatic phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mutations and deletions or epigenetic silencing have been observed in multiple tumor types including CRC. To assess the association of PTEN polymorphisms and lifestyle habits with CRC risk in Chinese population, we carried out a case-control study which included 545 cases and 522 controls. In the present study, we genotyped eight single-nucleotide polymorphisms (SNPs) in PTEN and found that rs11202607 was associated with increased CRC risk (odds ratio (OR)--.40, 95?% confidence interval (CI)--.04-.90). Stratification analysis by lifestyle habits showed a stronger association between rs11202607 and CRC risk among never tea drinkers than that among tea-drinkers (OR--.04, 95?% CI 1.29-.22), and significant additive interaction between rs10490920 and tea drinking status was observed. Our study provided the evidence of an association between PTEN polymorphisms and the risk of CRC and significant additive interaction between PTEN polymorphism and tea drinking. Studies with larger sample size and further investigations into the mechanism are warranted to clarify the role of PTEN in colorectal carcinogenesis and the association between PTEN genetic variations, environment exposure, and CRC risk.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700