Phase-Field Simulation of Orowan Strengthening by Coherent Precipitate Plates in an Aluminum Alloy
详细信息    查看全文
  • 作者:Hong Liu ; Yipeng Gao ; Liang Qi ; Yunzhi Wang
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:46
  • 期:7
  • 页码:3287-3301
  • 全文大小:2,613 KB
  • 参考文献:1.I. J. Polmear: Light Alloys: Metallurgy of the Light Metals, 3rd ed. Arnold, London, 1995.
    2.B. C. Muddle, S. P. Ringer, and I. J. Polmear: Trans. Mater. Res. Soc. Jpn., 1994; vol. 19B, pp. 999.
    3.S. P. Ringer and K. Hono: Mater. Characterisation, 2000; vol. 44, pp. 101-31.View Article
    4.L. Bourgeois, C. Dwyer, M. Weyland, J. F. Nie, and B. C. Muddle: Acta Mater., 2012; vol. 60, pp. 633-44.View Article
    5.J. F. Nie and B. C. Muddle: J. Phase Equilib., 1998; vol. 19, pp. 543-51.View Article
    6.J.R. Pickens, H.F. Heubaum, T.J. Langan, and L.A. Kramer: Proc. of the 5th Int. Conf. on Aluminum-Lithium Alloys, vol. 1989, E.A. Starke, T.H. Sanders, eds., Mater. and Comp. Eng. Publications, Birmingham, p. 1397.
    7.S. C. Weakley-Bollin, W. Donlon, C. Wolverton, J. W. Jones and J. E. Allison: Metall. Mater. Trans. A 2004, vol. 35A, pp. 2407-18.View Article
    8.L. Bourgeois, J. F. Nie and B. C. Muddle: Phil. Mag. 2005, vol. 85, 3487-3509.View Article
    9.L. Bourgeois, C. Dwyer, M. Weyland, J. F. Nie and B. C. Muddle: Acta Mater. 2011, vol. 59, pp. 7043-50.View Article
    10.A. Deschamps, B. Decreus, F. de Geuser, T. Dorin and M. Weyland: Acta Mater. 2013, vol. 61, pp. 4010-21.View Article
    11.W. A. Cassada, G. J. Shiflet and E. A. Starke: Metall. Trans. A 1991, vol. 22A, pp. 299-306.View Article
    12.S. P. Ringer, B. C. Muddle and I. J. Polmear: Metall. Mater. Trans. A 1995, vol. 26A, pp. 1659-71.View Article
    13.B. C. Muddle and I. J. Polmear: Acta Metall. Mater. 1989, vol. 37, pp. 777-89.View Article
    14.L. Reich, M. Murayama and K. Hono: Acta Mater. 1998, vol. 46, pp. 6053-62.View Article
    15.J. M. Slicock, T. J. Heal, and H. K. Hardy: J. Inst. Metals, 1953, vol. 82, pp. 239-45.
    16.I. J. Polmear: Mater. Sci. Technol., 1994, vol. 10, pp. 1-16.View Article
    17.D. J. Bacon, U. F. Kocks, and R. O. Scattergood: Phil. Mag. 1973, vol. 28, pp. 1241-63.View Article
    18.S. Queyreau, G. Monnet and B. Devincre: Acta Mater., 2010, vol. 58, pp. 5586-95.View Article
    19.P.B. Hirsch and F.J. Humphreys: The Physics of Strength and Plasticity, A.S. Argon, ed., MIT Press, Cambridge (MA), 1969.
    20.A. W. Zhu and E. A. Starke: Acta Mater., 1999; vol. 47, pp. 3263-70.View Article
    21.J. da Teixeira, D. G. Cram, L. Bourgeois, T. J. Bastow, A. J. Hill, and C. R. Hutchinson: Acta Mater., 2008; vol. 56, pp. 6109-22.View Article
    22.M. F. Ashby: Acta Metall., 1966; vol. 14, pp. 678-81.
    23.L.M. Brown and R.K. Ham: Strengthening Methods in Crystals. Applied Science Publishers, London, 1971.
    24.M.F. Ashby: in The Physics of Strength and Plasticity, A.S. Argon, ed. MIT Press, Cambridge (MA),1969, pp. 143-8.
    25.U. F. Kocks: Phil. Mag., 1966; vol. 13, pp. 541-66.View Article
    26.U. F. Kocks: Can. J. Phys., 1967; vol. 45, pp. 737-55.View Article
    27.E. Hornbogen and E. A. Starke: Acta Metall. Mater., 1993; vol. 41, pp. 1-16.View Article
    28.A. J. Ardell: Metall. Trans. A, 1985; vol. 16A, pp. 2131-65.View Article
    29.A. J. E. Foreman and M.J. Makin: Phil. Mag., 1966; vol. 14, pp. 911-24.View Article
    30.J. F. Nie and B. C. Muddle: Acta Mater., 2008; vol. 56, pp. 3490-3501.View Article
    31.R. L. Fullman: Trans. AIME 1953; vol. 197, pp. 447-52.
    32.G. Kresse and J. Furthmuller: Phys. Rev. B 1996; vol. 54, pp. 11169-86.View Article
    33.G. Kresse and J. Furthmuller: Comput. Mater. Sci. 1996; vol. 6, pp. 15-50.View Article
    34.P. E. Bloch: Phys. Rev. B 1994; vol. 50, pp. 17953-89.View Article
    35.G. Kresse and G. Joubert: Phys. Rev. B 1999; vol. 59, pp. 1758-75.View Article
    36.J. P. Perdew and Y. Wang: Phys. Rev. B 1992; vol. 45, pp. 13244-49.View Article
    37.J. P. Perdew, J. A. Chevary, S. H. Vosko: Phys. Rev. B 1992; vol. 46, pp. 6671-87.View Article
    38.J. H. Monkhorst, J. D. Pack: Phys. Rev. B 1976; vol. 13, pp. 5188-92.View Article
    39.S. Koda and K. Matsuura: J. Inst. of Metals 1963; vol. 91, pp. 229-36.
    40.J. Harford, B. von Sydow, G. Wahnstrom, B. I. Lundqvist: Phys Rev B 1998; vol. 58, pp. 2487-96.View Article
    41.A. G. Khachaturyan: Theory of Structural Transformations in Solids. New York: John Wiley & Sons; 1983.
    42.C. Shen, Y. Wang: Acta Mater. 2003; vol. 51, pp. 2595-610.View Article
    43.C. Shen, Y. Wang: Acta Mater. 2004; vol. 52, pp. 683-91.View Article
    44.N. Zhou, C. Shen, M. J. Mills, J. Li, Y. Wang: Acta Mater. 2011; vol. 59, pp. 3484-97.View Article
    45.Y. U. Wang, Y. M. Jin, A. M. Cuitino, A. G. Khachaturyan: Acta Mater. 2001; vol. 49, pp. 1847-57.View Article
    46.S. M. Allen, J. W. Cahn: Acta Metall. 1979; vol. 27, pp. 1085-101.View Article
    47.A. Deschamps, T. J. Bastow, F. de Geuser, A. J. Hill, C. R. Hutchinson: Acta Mater. 2011; vol. 59, pp. 2918-27.View Article
    48.Y. Wang, J. Li: Acta Mater. 2010; vol. 58, pp. 1212-35.View Article
    49.C. Shen, J. Lu, Y. Wang: Acta Mater. 2014; vol. 74, pp. 125-131.View Article
    50.A. Hunter, R. F. Zhang, I. J. Beyerlein: J. Appl. Phys. 2014; vol. 115,
  • 作者单位:Hong Liu (1) (2)
    Yipeng Gao (2)
    Liang Qi (3)
    Yunzhi Wang (2)
    Jian-Feng Nie (1)

    1. Department of Materials Engineering, Monash University, Clayton, VIC, 3800, Australia
    2. Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, 43210, USA
    3. Department of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Structural Materials
    Physical Chemistry
    Ceramics,Glass,Composites,Natural Materials
  • 出版者:Springer Boston
  • ISSN:1543-1940
文摘
The density-functional theory and phase-field dislocation model have been used to compute and simulate the strength of θ-plates and precipitate-dislocation interactions in an Al-4Cu-0.05Sn (wt?pct) alloy that is strengthened exclusively by coherent θ-precipitate plates. The density-functional theory computation indicates that a 1.06 GPa applied stress is required for a dislocation to shear through a θ-plate, which is far larger than the critical resolved shear stress increment (ΔCRSS) of the peak-aged sample of the alloy. The ΔCRSS values of the alloy aged for 0.5, 3, 48, and 168?hours at 473 K (200?°C) are computed by the phase-field dislocation model, and they agree well with experimental data. The phase-field simulations suggest that the ΔCRSS value increases with an increase in plate aspect ratio and number density, and that the change of ΔCRSS is not sensitive to the variation of the distribution of θ-plate diameters when the average diameter of θ-plates is fixed, and that the coherency strain of θ-plates does not contribute much to ΔCRSS of the alloy when the θ-number density and aspect ratio are below certain values. The simulations further suggest that, when the volume fraction of θ-is constant, the ΔCRSS value for a random spatial distribution of the θ-plates is 0.78 times of that for a regular spatial distribution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700