Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.)
详细信息    查看全文
  • 作者:Yong-Fang Li (1)
    Yixing Wang (1)
    Yuhong Tang (2)
    Vijaya Gopal Kakani (3)
    Ramamurthy Mahalingam (1)
  • 关键词:Switchgrass ; Biofuel ; Microarray ; Heat stress ; Transcriptome
  • 刊名:BMC Plant Biology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:883 KB
  • 参考文献:1. Hitchcock AS, Chase A: / Manual of the Grass of the United State. Washington, D. C: U S Government Printing Office; 1950.
    2. Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G: Switchgrass as a biofuels feedstock in the USA. / Can J Plant Sci 2006, 86:1315-325. CrossRef
    3. Porter CL: An analysis of variation between upland and lowland switchgrass panicum virgatum L in Central Oklahoma. / Ecology 1966, 47:980-92. CrossRef
    4. Casler MD, Tobias CM, Kaeppler SM, Buell CR, Wang ZY, Cao P, Schmutz J, Ronald P: The switchgrass genome: tools and strategies. / Plant Genome 2011, 4:273-82. CrossRef
    5. Gunter LE, Tuskan GA, Wullschleger SD: Diversity among populations of switchgrass based on RAPD markers. / Crop Sci 1996, 36:1017-022. CrossRef
    6. Marra M, Keene T, Skousen J, Griggs T: Switchgrass yield on reclaimed surface mines for bioenergy production. / J Environ Qual 2013,42(3):696-03. CrossRef
    7. Brudecki G, Cybulska I, Rosentrater K: Optimization of clean fractionation process applied to switchgrass to produce pulp for enzymatic hydrolysis. / Bioresour Technol 2013, 131:101-12. CrossRef
    8. Cortese LM, Honig J, Miller C, Bonos SA: Genetic diversity of twelve switchgrass populations using molecular and morphological markers. / Bioenergy Res 2010, 3:262-71. CrossRef
    9. Huang SX, Su XJ, Haselkorn R, Gornicki P: Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. / Plant Sci 2003, 164:43-9. CrossRef
    10. Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S: Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. / Crop Sci 1996, 36:1049-052. CrossRef
    11. Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH: Genetic diversity in switchgrass collections assessed by EST-SSR markers. / Bioenergy Res 2008, 1:136-46. CrossRef
    12. Todd J, Wu YQ, Wang Z, Samuels T: Genetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms. / Genet Mol Res 2011, 10:2976-986. CrossRef
    13. Zalapa JE, Price DL, Kaeppler SM, Tobias CM, Okada M, Casler MD: Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. / Theor Appl Genet 2011, 122:805-17. CrossRef
    14. Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM: Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. / Genetics 2010, 185:745-60. CrossRef
    15. Liu L, Wu Y, Wang Y, Samuels T: A high-density simple sequence repeat-based genetic linkage map of switchgrass. / G3 2012, 2:357-70. CrossRef
    16. Saski CA, Li Z, Feltus FA, Luo H: New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits. / BMC Genomics 2011, 12:369. CrossRef
    17. Sharma MK, Sharma R, Cao P, Jenkins J, Bartley LE, Qualls M, Grimwood J, Schmutz J, Rokhsar D, Ronald PC: A genome-wide survey of switchgrass genome structure and organization. / PloS One 2012,7(4):e33892. CrossRef
    18. Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, Casler MD, Buckler ES, Costich DE: SNP Discovery with EST and NextGen sequencing in switchgrass (Panicum virgatum L.). / PloS One 2012,7(9):e44112. CrossRef
    19. Wang YX, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R: Exploring the switchgrass transcriptome using second-generation sequencing technology. / PloS One 2012,7(3):e34225. CrossRef
    20. Young HA, Lanzatella CL, Sarath G, Tobias CM: Chloroplast genome variation in upland and lowland switchgrass. / PloS One 2011,6(8):e23980. CrossRef
    21. Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, Chou WC, He J, Shen H, Srivastava AC, Pennacchio C: Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). / Plant J 2013, 74:160-73. CrossRef
    22. Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DG, Stewart CN Jr, Tang Y: Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. / Plant Biotechnol J 2012, 10:443-52. CrossRef
    23. Mann DG, Lafayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA: Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. / Plant Biotechnol J 2012, 10:226-36. CrossRef
    24. Xi Y, Ge Y, Wang ZY: Genetic transformation of switchgrass. / Methods Mol Biol 2009, 581:53-9. CrossRef
    25. Kakani VG, Reddy KR: Temperature response of C4 species big bluestem (Andropogon gerardii) is modified by growing carbon dioxide concentration. / Environ Exp Bot 2007, 61:281-90. CrossRef
    26. Kakani VG, Surabhi GK, Reddy KR: Photosynthesis and fluorescence responses of C4 plant an- dropogon gerardii acclimated to temperature and carbon dioxide. / Photosynthetica 2009, 46:420-30. CrossRef
    27. Kandel TP, Wu Y, Kakani VG: Growth and yield responses of switchgrass ecotypes to temperature. / Am J Plant Sci 2013, 4:1173-180. CrossRef
    28. Peck SC, Teisberg TJ: CETA: a model for carbon emissions trajectory assessment. / Energy J 1992, 13:55-7.
    29. Jagadish SV, Craufurd PQ, Wheeler TR: High temperature stress and spikelet fertility in rice (Oryza sativa L.). / J Exp Bot 2007, 58:1627-635. CrossRef
    30. Qu A-L, Ding Y-F, Jiang Q, Zhu C: Molecular mechanisms of the plant heat stress response. / Biochem Biophys Res Commun 2013, 432:203-07. CrossRef
    31. Semenov MA, Halford NG: Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. / J Exp Bot 2009, 60:2791-804. CrossRef
    32. Behrman KD, Kiniry JR, Winchell M, Juenger TE, Keitt TH: Spatial forecasting of switchgrass productivity under current and future climate change scenarios. / Ecol Appl 2013, 23:73-5. CrossRef
    33. Casler MD, Vogel KP, Taliaferro CM, Wynia RL: Latitudinal adaptation of switchgrass populations. / Crop Sci 2004, 44:293-03.
    34. Casler MD, Boe AR: Cultivar X environment interactions in switchgrass. / Crop Sci 2003, 43:2226-233. CrossRef
    35. Balasko JA, Smith D: Influence of temperature and nitrogen fertilization on the growth and composition of switchgrass (Panicum virgatum L.) and timothy (Phleum pratense L.) at anthesis. / Agron J 1971, 63:853-57. CrossRef
    36. Hartman JC, Nipper JB: Physiological and growth responses of switchgrass (Panicum virgatum L.) in native stands under passive Air temperature manipulation. / GCB Bioenergy 2012. doi:10.1111/j.1757-707.2012.01204.x
    37. Finka A, Mattoo RU, Goloubinoff P: Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. / Cell Stress Chaperones 2011, 16:15-1. CrossRef
    38. Qin DD, Wu HY, Peng HR, Yao YY, Ni ZF, Li ZX, Zhou CL, Sun QX: Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array. / BMC Genomics 2008, 9:432. doi:10.1186/1471-164--432 CrossRef
    39. Larkindale J, Vierling E: Core genome responses involved in acclimation to high temperature. / Plant Physiol 2008, 146:748-61. CrossRef
    40. Fernandes J, Morrow DJ, Casati P, Walbot V: Distinctive transcriptome responses to adverse environmental conditions in Zea mays L. / Plant Biotechnol J 2008, 6:782-98. CrossRef
    41. Zhang XW, Li JP, Liu AL, Zou J, Zhou XY, Xiang JH, Rerksiri W, Peng Y, Xiong XY, Chen XB: Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. / PloS One 2012,7(11):e49652. doi:10.1371/journal.pone.0049652 CrossRef
    42. Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the agricultural community. / Nucleic Acids Res 2010,38(Web Server issue):W64-0. CrossRef
    43. McClung CR, Davis SJ: Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. / Curr Biol 2010, 20:R1086-092. CrossRef
    44. Ruelland E, Zachowski A: How plants sense temperature. / Environ Exp Bot 2010, 69:225-32. CrossRef
    45. Mittler R, Finka A, Goloubinoff P: How do plants feel the heat? / Trends Biochem Sci 2012, 37:118-25. CrossRef
    46. Queitsch C, Hong SW, Vierling E, Lindquist S: Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. / Plant Cell 2000, 12:479-92.
    47. Su PH, Li HM: Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. / Plant Physiol 2008, 146:1231-241. CrossRef
    48. Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M: Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. / J Biol Chem 2007, 282:37794-7804. CrossRef
    49. Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z: Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. / Plant Mol Biol 2008, 67:363-73. CrossRef
    50. Kotak S, Larkindale J, Lee U, Von Koskull-Doring P, Vierling E, Scharf KD: Complexity of the heat stress response in plants. / Curr Opin Plant Biol 2007, 10:310-16. CrossRef
    51. Hu C, Lin SY, Chi WT, Charng YY: Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. / Plant Physiol 2012, 158:747-58. CrossRef
    52. Mahalingam R, Fedoroff N: Stress response, cell death and signalling: the many faces of reactive oxygen species. / Physiol Plant 2003, 119:56-8. CrossRef
    53. Volkov RA, Panchuk II, Mullineaux PM, Schoffl F: Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. / Plant Mol Biol 2006, 61:733-46. CrossRef
    54. Morimoto RI, Santoro MG: Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. / Nat Biotechnol 1998, 16:833-38. CrossRef
    55. Apel K, Hirt H: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. / Ann Rev Plant Biol 2004, 55:373-99. CrossRef
    56. Tipping AJ, McPherson MJ: Cloning and molecular analysis of the pea seedling copper amine oxidase. / J Biol Chem 1995, 270:16939-6946. CrossRef
    57. Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R: Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. / Plant Physiol 2007, 144:1777-785. CrossRef
    58. Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R: Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. / Plant Cell 2005, 17:268-81. CrossRef
    59. Laugier E, Tarrago L, Dos Santos CV, Eymery F, Havaux M, Rey P: Arabidopsis thaliana plastidial methionine sulfoxide reductases B, MSRBs, account for most leaf peptide MSR activity and are essential for growth under environmental constraints through a role in the preservation of photosystem antennae. / Plant J 2010, 61:271-82. CrossRef
    60. Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schroder J: Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450CYP72A1 as secologanin synthase. / Plant J 2000, 24:797-04. CrossRef
    61. Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, De Miranda SM, Baier M, Finkemeier I: The function of peroxiredoxins in plant organelle redox metabolism. / J Exp Bot 2006, 57:1697-709. CrossRef
    62. Durand TC, Sergeant K, Carpin S, Label P, Morabito D, Hausman JF, Renaut J: Screening for changes in leaf and cambial proteome of Populus tremula x P. alba under different heat constraints. / J Plant Physiol 2012, 169:1698-718. CrossRef
    63. Park UH, Han HS, Um E, An XH, Kim EJ, Um SJ: Redox regulation of transcriptional activity of retinoic acid receptor by thioredoxin glutathione reductase (TGR). / Biochem Biophys Res Commun 2009, 390:241-46. CrossRef
    64. Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T: Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. / Plant Cell Physiol 2004, 45:18-7. CrossRef
    65. Gholizadeh A, Kohnehrouz BB: Identification of DUF538 cDNA clone from Celosia cristata expressed sequences of nonstressed and stressed leaves. / Russ J Plant Physl+ 2010, 57:247-52. CrossRef
    66. Gholizadeh A: Heterologous expression of stress-responsive DUF538 domain containing protein and its morpho-biochemical consequences. / Protein J 2011, 30:351-58. CrossRef
    67. Phipps BM, Hoffmann A, Stetter KO, Baumeister W: A novel atpase complex selectively accumulated upon heat-shock is a major cellular-component of thermophilic archaebacteria. / Embo J 1991, 10:1711-722.
    68. Phipps BM, Typke D, Hegerl R, Volker S, Hoffmann A, Stetter KO, Baumeister W: Structure of a molecular chaperone from a thermophilic archaebacterium. / Nature 1993, 361:475-77. CrossRef
    69. Hill JE, Hemmingsen SM: Arabidopsis thaliana type I and II chaperonins. / Cell Stress Chaperones 2001, 6:190-00. CrossRef
    70. Gong ZZ, Dong CH, Lee H, Zhu JH, Xiong LM, Gong DM, Stevenson B, Zhu JK: A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. / Plant Cell 2005, 17:256-67. CrossRef
    71. Gong ZZ, Lee H, Xiong LM, Jagendorf A, Stevenson B, Zhu JK: RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. / PNAS 2002, 99:11507-1512. CrossRef
    72. Chung E, Cho CW, Yun BH, Choi HK, So HA, Lee SW, Lee JH: Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. / Gene 2009, 443:91-9. CrossRef
    73. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. / Plant Cell 2001, 13:61-2.
    74. Nakamura T, Muramoto Y, Yokota S, Ueda A, Takabe T: Structural and transcriptional characterization of a salt-responsive gene encoding putative ATP-dependent RNA helicase in barley. / Plant Sci 2004, 167:63-0. CrossRef
    75. Macovei A, Vaid N, Tula S, Tuteja N: A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. / Plant Signal Behav 2012, 7:1138-143. CrossRef
    76. Reddy AS, Ali GS, Celesnik H, Day IS: Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. / Plant Cell 2011, 23:2010-032. CrossRef
    77. Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS: Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. / Plant J 2002, 31:629-38. CrossRef
    78. Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY: Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. / Plant Physiol 2009, 149:1773-784. CrossRef
    79. Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG: The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. / Plant J 2008, 55:760-73. CrossRef
    80. Li S, Zhou X, Chen L, Huang W, Yu D: Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. / Mol Cells 2010, 29:475-83. CrossRef
    81. Liu HC, Liao HT, Charng YY: The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. / Plant Cell Environ 2011, 34:738-51. CrossRef
    82. Christensen A, Svensson K, Persson S, Jung J, Michalak M, Widell S, Sommarin M: Functional characterization of Arabidopsis calreticulin1a: A key alleviator of endoplasmic reticulum stress. / Plant Cell Physiol 2008, 49:912-24. CrossRef
    83. Jia XY, He LH, Jing RL, Li RZ: Calreticulin: conserved protein and diverse functions in plants. / Physiol Plantarum 2009, 136:127-38. CrossRef
    84. Supek F, Bosnjak M, Skunca N, Smuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. / PloS One 2011, 6:e21800. CrossRef
    85. Nadeau K, Das A, Walsh CT: Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. / J Biol Chem 1993, 268:1479-487.
    86. Waters ER: The evolution, function, structure, and expression of the plant sHSPs. / J Exp Bot 2013, 64:391-03. CrossRef
    87. Lund AA, Blum PH, Bhattramakki D, Elthon TE: Heat-stress response of maize mitochondria. / Plant Physiol 1998, 116:1097-110. CrossRef
    88. Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J: Asymmetric activation of the hsp90 dimer by its cochaperone aha1. / Mol Cell 2010, 37:344-54. CrossRef
    89. Ran FL, Gadura N, Michels CA: Hsp90 Cochaperone Aha1 is a negative regulator of the saccharomyces MAL activator and acts early in the chaperone activation pathway. / J Biol Chem 2010, 285:13850-3862. CrossRef
    90. Padidam M, Reddy VS, Beachy RN, Fauquet CM: Molecular characterization of a plant mitochondrial chaperone GrpE. / Plant Mol Biol 1999, 39:871-81. CrossRef
    91. Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang RY: Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. / Plant Cell 2002, 14:1621-633. CrossRef
    92. Nystrom T, Neidhardt FC: Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. / Mol Microbiol 1994, 11:537-44. CrossRef
    93. Credali A, Garcia-Calderon M, Dam S, Perry J, Diaz-Quintana A, Parniske M, Wang TL, Stougaard J, Vega JM, Marquez AJ: The K--dependent asparaginase, NSE1, is crucial for plant growth and seed production in lotus japonicus. / Plant Cell Physiol 2013, 54:107-18. CrossRef
    94. Cho CW, Lee HJ, Chung E, Kim KM, Kim JEHJI, Chung J, Ma YZ, Fukui K, Lee DW, Kim DH, / et al.: Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. / Mol Cells 2007, 23:280-86.
    95. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. / Biostatistics 2003, 4:249-64. CrossRef
    96. Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA: PLEXdb: gene expression resources for plants and plant pathogens. / Nucleic Acids Res 2012,40(Database issue):D1194-201. CrossRef
  • 作者单位:Yong-Fang Li (1)
    Yixing Wang (1)
    Yuhong Tang (2)
    Vijaya Gopal Kakani (3)
    Ramamurthy Mahalingam (1)

    1. Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
    2. Samuel Roberts Noble Foundation, Genomics Core Facility, Ardmore, OK, 73401, USA
    3. Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
  • ISSN:1471-2229
文摘
Background Global warming predictions indicate that temperatures will increase by another 2-6°C by the end of this century. High temperature is a major abiotic stress limiting plant growth and productivity in many areas of the world. Switchgrass (Panicum virgatum L.) is a model herbaceous bioenergy crop, due to its rapid growth rate, reliable biomass yield, minimal requirements of water and nutrients, adaptability to grow on marginal lands and widespread distribution throughout North America. The effect of high temperature on switchgrass physiology, cell wall composition and biomass yields has been reported. However, there is void in the knowledge of the molecular responses to heat stress in switchgrass. Results We conducted long-term heat stress treatment (38°/30°C, day/night, for 50?days) in the switchgrass cultivar Alamo. A significant decrease in the plant height and total biomass was evident in the heat stressed plants compared to controls. Total RNA from control and heat stress samples were used for transcriptome analysis with switchgrass Affymetrix genechips. Following normalization and pre-processing, 5365 probesets were identified as differentially expressed using a 2-fold cutoff. Of these, 2233 probesets (2000 switchgrass unigenes) were up-regulated, and 3132 probesets (2809 unigenes) were down-regulated. Differential expression of 42 randomly selected genes from this list was validated using RT-PCR. Rice orthologs were retrieved for 78.7% of the heat stress responsive switchgrass probesets. Gene ontology (GOs) enrichment analysis using AgriGO program showed that genes related to ATPase regulator, chaperone binding, and protein folding was significantly up-regulated. GOs associated with protein modification, transcription, phosphorus and nitrogen metabolic processes, were significantly down-regulated by heat stress. Conclusions Plausible connections were identified between the identified GOs, physiological responses and heat response phenotype observed in switchgrass plants. Comparative transcriptome analysis in response to heat stress among four monocots -switchgrass, rice, wheat and maize identified 16 common genes, most of which were associated with protein refolding processes. These core genes will be valuable biomarkers for identifying heat sensitive plant germplasm since they are responsive to both short duration as well as chronic heat stress treatments, and are also expressed in different plant growth stages and tissue types.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700